Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since 2007, the World Economic Forum (WEF) has issued data on the factors and policies that contribute to the development of tourism and competitiveness across countries worldwide. While WEF compiles the yearly report out of data from governmental and private stakeholders, we seek to analyze the representativeness of the open and collaborative platform OpenStreetMap (OSM) to the international tourism scene. For this study, we selected eight parameters indicative of the tourism development of each country, such as the number of beds or cultural sites, and we extracted the OSM objects representative of these indicators. Then, we performed a statistical and regression analysis of the OSM data to compare and model the data emitted by WEF with data from OSM. Our aim is to analyze the tourist representativeness of the OSM data with respect to official reports to better understand when OSM data can be used to complement the official information and, in some cases, when official information is scarce or non-existent, to assess whether the OSM information can be a substitute. Results show that OSM data provide a fairly accurate picture of official tourism statistics for most variables. We also discuss the reasons why OSM data is not so representative for some variables in some specific countries. All in all, this work represents a step towards the exploitation of open and collaborative data for tourism.

Details

Title
On the Representativeness of OpenStreetMap for the Evaluation of Country Tourism Competitiveness
Author
Bustamante, Alexander 1   VIAFID ORCID Logo  ; Sebastia, Laura 2   VIAFID ORCID Logo  ; Onaindia, Eva 2   VIAFID ORCID Logo 

 Valencia Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (L.S.); [email protected] (E.O.); Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470001, Colombia 
 Valencia Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (L.S.); [email protected] (E.O.) 
First page
301
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532400978
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.