It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Finite field is a wide topic in mathematics. Consequently, none can talk about the whole contents of finite fields. That is why this research focuses on small content of finite fields such as polynomials computational, ring of integers modulo p where p is prime or a power of prime. Most of the times, books which talk about finite fields are rarely to be found, therefore one can know how arithmetic computational on small finite fields works and be able to extend to the higher order. This means how integer and polynomial arithmetic operations are done for Z p such as addition, subtraction, division and multiplication in Z p followed by reduction of p (modulo p). Since addition is the same as subtraction and division is treated as the inverse of the multiplication, thus in this paper, only addition and multiplication arithmetic operations are applied for the considered small finite fields (Z 2 − Z 17 ). With polynomials, one can learn from this paper how arithmetic computational through polynomials over finite fields are performed since these polynomials have coefficients drawn from finite fields. The paper includes also construction of polynomials over finite fields as an extension of finite fields with polynomials. This lead to arithmetic computational tables for the finite fields F q [x]/f(x), where f(x) is irreducible over F q . From the past decades, many researchers complained about the applications of some topics in pure mathematics and therefore the finite fields play more important role in coding theory, which involves error-coding detection and error-correction as well as cyclic codes. As a result, this research paper shows these applications among others.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer