Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The results of basic ammonothermal crystallization of gallium nitride are described. The material is mainly analyzed in terms of the formation of stress (called stress-induced polarization effect) and defects (threading dislocations) appearing due to a stress relaxation process. Gallium nitride grown in different positions of the crystallization zone is examined in cross-polarized light. Interfaces between native ammonothermal seeds and new-grown gallium nitride layers are investigated in ultraviolet light. The etch pit densities in the seeds and the layers is determined and compared. Based on the obtained results a model of stress and defect formation is presented. New solutions for improving the structural quality of basic ammonothermal gallium nitride crystals are proposed.

Details

Title
On Stress-Induced Polarization Effect in Ammonothermally Grown GaN Crystals
Author
Grabianska, Karolina  VIAFID ORCID Logo  ; Kucharski, Robert; Sochacki, Tomasz  VIAFID ORCID Logo  ; Weyher, Jan L; Iwinska, Malgorzata  VIAFID ORCID Logo  ; Grzegory, Izabella; Bockowski, Michal
First page
554
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652961385
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.