It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Dimension or scale is everything. When a thing is observed by different scales, different results can be obtained. Two scales are enough for most of practical problems, and a new definition of a two-scale dimension instead of the fractal dimension is given to deal with discontinuous problems. Fractal theory considers a self-similarity pattern, which cannot be found in any a real problem, while the two-scale theory observes each problem with two scales, the large scale is for an approximate continuous problem, where the classic calculus can be fully applied, and on the smaller scale, the effect of the porous structure on the properties can be easily elucidated. This paper sheds a new light on applications of fractal theory to real problems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer