Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, an emphasis is put on vapor-sensitive Bragg stacks as an important class of optical sensors. All-niobia Bragg stacks were deposited by spin-coating of sol-gel Nb2O5 thin films alternated with mesoporous layers after proper design through optimization of operating wavelength and number of layers in the stack. Mesoporous Nb2O5 films with different morphology and identical structure were obtained using organic templates (Pluronics PE6200 and PE6800) and subsequent annealing. Transmittance measurements were performed as a detection method that offers technological simplicity and accuracy. It was demonstrated that stacks including PE6200 templated films exhibit higher sensitivity than stacks templated with PE6800. It was assumed and verified by computer-aided modelling of experimental data that mesoporous films prepared with addition of PE6200, although less porous, were more stable compared to those templated with PE6800, and did not collapse during the thermal treatment of the stacks. Furthermore, the reproducibility of optical response was studied by sorption and desorption cycles of acetone vapors. The suitability of all-niobia Bragg stacks for optical sensing of VOCs was discussed.

Details

Title
Optical Detection of VOC Vapors Using Nb2O5 Bragg Stack in Transmission Mode
Author
Chorbadzhiyska, Yoana; Pavlov, Venelin; Georgieva, Biliana; Babeva, Tsvetanka  VIAFID ORCID Logo 
First page
399
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576482741
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.