Abstract

Self-driving and semi-self-driving cars play an important role in our daily lives. The effectiveness of these cars is based heavily on the use of their surrounding areas to collect sensitive and vital information. However, external infrastructures also play significant roles in the transmission and reception of control data, cooperative awareness messages, and caution notifications. In this case, roadside units are considered one of the most important communication peripherals. Random distribution of these infrastructures will overburden the spread of self-driving vehicles in terms of cost, bandwidth, connectivity, and radio coverage area. In this paper, a new distributed roadside unit is proposed to enhance the performance and connectivity of these cars. Therefore, this approach is based primarily on k-means to find the optimal location of each roadside unit. In addition, this approach supports dynamic mobility with a long period of connectivity for each car. Further, this system can adapt to various locations (e.g., highways, rural areas, urban environments). The simulation results of the proposed system are reflected in its efficiency and effectively. Thus, the system can achieve a high connectivity rate with a low error rate while reducing costs.

Details

Title
An Optimal Distribution of RSU for Improving Self-Driving Vehicle Connectivity
Author
Khattab Alheeti; Abdulkareem Alaloosy; Khalaf, Haitham; Alzahrani, Abdulkareem; Duaa Al_dosary
Pages
3311-3319
Section
ARTICLE
Publication year
2022
Publication date
2022
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2578264823
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.