Academic Editor:Seenith Sivasundaram
School of Economic Mathematics, Southwestern University of Finance and Economics, Cheng Du 610074, China
Received 19 February 2015; Revised 11 July 2015; Accepted 26 July 2015; 31 August 2015
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
During the last decade, the development of venture capital captured scholarly attention. Venture capital structure models have developed into a variety of forms, and venture investment institutions have inclined to joint investment [1]. In financial markets, the latter is presented as the phenomenon below: more participants are from developed countries or regions; for example, about 60% of venture investments are joint investment in the United States and Canada, and about 30% in Europe [2]. From the geographical perspective, foreign VCs syndicate with a local VC in 57% of all cross-border deals [3]. More and more venture capitalists (later denoted as VCs) and venture entrepreneurs (later denoted as ENs) prefer joint investment; the reasons are as follows. (1) VCs only have limited investment, which is difficult to meet the necessary capital demand of the project. (2) Joint investment is a way for VCs to diversify risks. (3) ENs need varied specialized guidance from multiple VCs. (4) Joint investment may reduce costs and modify risk allocation, which would be a burden for foreign VCs if they invest alone [3]. (5) Through syndication, foreign VCs may obtain easier access to investment opportunities and may face lower information costs and risks [3]. (6) Venture capital syndication model for enterprises and investors would bring better performance. Therefore, when compared to separate investment, venture investment institutions tend to form a syndicate, resulting in a network connection among investing institutions that realizes the sharing of resources [4]. This explains the crucial and practical significance of the study on ENs' financing from multiple VCs (joint investment).
Two important tasks of venture investment management are to realize the value of venture capital and to ensure the success of venture projects. ENs' and VCs' efforts are very important to the success of venture projects, which is to say that two parties' efforts are equally indispensable to the daily running of the project. VCs play a crucial dual role, both in providing investment and in boosting firms to realize an efficiency gain. In the process of development, a joint effort of VCs and ENs is therefore needed to promote startups to develop and grow. Specifically speaking, ENs' efforts provide gains on the values of core technological innovations, while VCs make efforts to improve the qualities of corporate governance and market valuation and to mitigate operating cost by offering specialized service. However, both parties merely have partial residual claim. In the case of information asymmetry, especially in which their behaviors are not verifiable, a dual moral hazard might prevail. As we would see later, virtually all of the studies in this specific area view venture capital as a short-term source of financing. VCs aim to exit once the firms grow into a sufficient size with credibility, this is, when VCs can cash out on their investment. Financing from VCs comes usually in several rounds, starting from seed financing and reaching the crest with an exit or in cash terms [5]. Thus venture capital management remains a long-term problem. In practice, NEs' and VCs' efforts are inserted in a number of stages; for example, we can denote the efforts of the first stage as [figure omitted; refer to PDF] , the efforts of the second as [figure omitted; refer to PDF] , and the efforts of the [figure omitted; refer to PDF] -st as [figure omitted; refer to PDF] . Obviously, [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , and [figure omitted; refer to PDF] can be different. At the same time, venture capital contracts can be different as well.
In this paper, efforts and contracts of the ENs and VCs are supposed to be resolved as a multistaged problem in a joint investment, and, therefore, a Stackelberg game model in a multistaged venture investment is established. Our study finds that a multistaged investment remains a considerable approach to deal with moral hazard. Optimal efforts of ENs are positively correlated with their future earnings and VCs' efforts, whereas their optimal efforts are negatively correlated with shares of sharing of VCs, fixed return, and effort; in every single stage, once VCs' efforts are given as a constant, expected payment of return sharing from ENs would decrease as time increases: this means that ENs expect to be paid more at early stages while less at later ones. Optimal Efforts of VCs are positively related to their share of the profits and also are positively related to the future revenue of ENs. Expected payment of return sharing from VCs would increase along with time increasing: this reveals that VCs hope to be paid less at early stages while more at later ones. In the meantime, we can have access to an optimal contract of venture investment.
2. Literature Review
There exist many important research results regarding moral hazard in venture investment management. See [6-12]. These studies focused substantially on three aspects.
First, venture capital contracts could be adopted by VCs to mitigate moral hazard of entrepreneurs (single moral hazard). Sahlman [13] considered that only when incentive restrictions are offered to ENs according to the observed information could the expected profits of the two parties converge. Shliefer and Vishy [14] found that if control rights were mainly assigned to minor shareholders, VCs' benefit, to some extent, could be protected from potential losses, but it simultaneously caused the issue of insider control. Ying and Zhao [15] designed an incentive mechanism to maximize the utilities of participants in venture capital, through integrating double principal-agent relationship terms of VCs.
The second aspect is to deal with the circumstance under which venture capital contracts could mitigate moral hazard on both VCs and ENs (double moral hazard). Guo et al. [16] considered the venture capital model on ENs' risk aversion when double moral hazard existed. Using principal-agent theory, Liu et al. [17] investigated the optimal contract between venture capital institutions and venture companies in light of double moral hazard, using principal-agent theory. They introduced VCs' default compensation on the basis of traditional equity contract, increasing the default costs of VCs as principals and thus reducing their tendency to default. Such approach avoided the moral hazard from venture capital institutions as principals, preventing them shirking the responsibilities in providing additional investment. In addition, the moral hazard's expenditure on inefficient employment by venture companies as agents was mitigated as well. Wu et al. [18] believed that personal bounded rationality, coupled with great uncertainty about returns, enabled the VCs and ENs to be exposed to double moral hazard. They divided the venture capital project into early days and the product market stage development and made descriptions of the properties of each stage. Jiang and Li [19] thought that serious problem of information asymmetry and multiple principal-agent relationship exists among the venture investors, VCs and ENs, which caused agency problems in venture capital more complicated than that in general corporations. How to design an incentive compatibility mechanism to mitigate severe moral hazard played a crucial role in the venture capital industry in searching for a sustainable and healthy development.
The third aspect is related to the emphasis on investigating entrepreneurs' past performances, reputations, and potentials. For instance, Ai et al. [20] considered that the relative performance evaluation, associated with the reputation incentive mechanism, had a benefit for solving the information asymmetry problem between the VCs and ENs and played a positive guiding role in designing a complete contract. Chan [21] thought that investigating ENs' past performance could only partially settle the adverse selection problem. However, a complete venture capital market and an objective performance evaluation system were needed. Xu et al. [22] emphasized that, like the control rights, reputation was an important component of the incentive mechanism in venture capitals as well. In their paper, they studied the impact of reputation effect on control rights from three aspects: equity, debt, and convertible preferred stock.
However, these researches were based on single period, while some scholars argued that multistaged financing was also a potent way to mitigate moral hazard [5]. Some scholars like Gompers and Lerner [23] and Admati and Peiderer [24] had made studies on this issue. Dahiya and Ray [25] viewed the staging as a mechanism for VCs. If the returns in early period were low, staged financing provided an option for the VCs to abandon the project in advance. By investigating the relationship between the VCs and the ENs, Elitzur and Gavious [5] provided a multistaged game model with moral hazard. Given the ENs' efforts in different periods, they designed a multistaged incentive contract to mitigate the moral hazard. It clearly showed that the VCs should give incentives to the ENs as late as possible, and the optimal contract was in the form of debt. Jin et al. [26] assumed that the output function in each period was the function of the effort in each period and investigated the two-staged financing problem of the ENs. Zhang and Wei [27] made some improvements for the model of Elitzur and Gavious [5]. In their model, double moral hazard was considered and two parties input different efforts in different periods. They deduced the optimal incentive contract and hence derived the optimal time to quit through analyzing the factors affecting the contract's design.
Furthermore, these researches were mainly involved with a single VC and a single EN, while, in practice, the EN may involve multiple VCs in their activities, which was actually a joint venture. Sah and Stiglitz [28] made the earliest research on joint venture and demonstrated that, in hierarchical organization, the financing decision of joint venture was superior to that of single investment. Aiming at the incentive contract of joint venture in the middle or late stages of the venture capital, Zhang and Yang [29] offered a model for joint venture contract, under the condition that the VC had made an initial investment and had obtained a better understanding of the project. They discussed the issue, under both the conditions of symmetric information and asymmetric information, of how to design an optimal contract so that two parties of joint venture could show their true signals. Casamatta [6] considered a situation in which leading VCs provided no initial investment and lacked an enough understanding of the project. In such a case, he made a research on how to design an optimal contract with other assistant VCs. Brander et al. [30] provided a model on incentive contracts, respectively, under both the conditions of selection and value-added hypothesis. They argued that, given the selection hypothesis, the quality of single investment was better than that of joint venture and hence the former had a better performance. While under the value-added hypothesis, joint venture performed better since multiple venture capitalists had advantages over single venture capital on providing a stronger management support, a higher reputation, and more kinds of contracts.
Existing researches above either focused on the decision-making issue on single period in venture capital, involved with a single VC and a single EN, or considered the decision-making in a single period under a joint venture. This left a space for our further study. What about multistaged financing? What about multistaged financing with the double effort of two parties? Therefore, based on the two perspectives above, this paper offers a multistaged Stackelberg game model by game theory. We focus on investigating several issues. First, we discuss the factors affecting the optimal effort of the VCs and EN in multiple periods. The second relates to the EN's time preference for investing: does it prefer an earlier investment or a later one? Finally, we come to the discussion of VCs' time preference to induce the EN to work extra hard, an earlier investment or a later one?
This paper proceeds as follows. In the next section, we put forward the model descriptions in Section 3. In Section 4, we consider the multistaged model and make solutions. In Section 5, we discuss the optimal contract in our model. Finally, Section 6 concludes the paper.
3. Model Descriptions
EN has an innovative project, which requires a total amount of financing as [figure omitted; refer to PDF] from outer [figure omitted; refer to PDF] VCs. EN and [figure omitted; refer to PDF] VCs are risk neutral, which means that they are equivalent in risk taking for the potential outfit. EN's decision objective is the maximization of remuneration. VCs' decision objective is the maximization of capital profits.
If the [figure omitted; refer to PDF] VCs and EN accomplished an investment intention, it would have been a long-term process for [figure omitted; refer to PDF] VCs to invest risk capital in the venture enterprise. Assuming that the investment will be installed in [figure omitted; refer to PDF] periods, VC [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ) will provide external capital [figure omitted; refer to PDF] for venture project at [figure omitted; refer to PDF] period ( [figure omitted; refer to PDF] ); thus [figure omitted; refer to PDF] , obviously. See Figure 1.
Figure 1: Multistage joint investment decision.
[figure omitted; refer to PDF]
The market average yield of external capital [figure omitted; refer to PDF] is [figure omitted; refer to PDF] ; namely, the capital cost of VCs is [figure omitted; refer to PDF] . The efforts given by EN in different stages are discrepant; naturally, there should also be stage-incentive for [figure omitted; refer to PDF] VCs. Divide the long-term relationship among [figure omitted; refer to PDF] VCs and EN into [figure omitted; refer to PDF] periods, and the effort given by EN in [figure omitted; refer to PDF] period is [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , and the costs of effort [figure omitted; refer to PDF] can also be equivalent to the monetary costs. For simplicity, assuming the utility function of effort paid by EN is [figure omitted; refer to PDF] , this means that, with the accumulation of efforts payment, the costs will also increase with an increasing speed; namely, [figure omitted; refer to PDF] and [figure omitted; refer to PDF] . Equally, VC [figure omitted; refer to PDF] will pay the effort of [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , in [figure omitted; refer to PDF] period, and also the costs of effort can be equivalent to the monetary costs. For simplicity, assuming the utility function of effort paid by VC [figure omitted; refer to PDF] is [figure omitted; refer to PDF] , it means that, with the accumulation of efforts payment, the cost will also increase with an increasing speed; namely, [figure omitted; refer to PDF] and [figure omitted; refer to PDF] .
Given the success probability of [figure omitted; refer to PDF] -period project [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , the success of venture project is related to both the effort [figure omitted; refer to PDF] paid by EN and the effort [figure omitted; refer to PDF] , paid by [figure omitted; refer to PDF] VCs. The more effort they paid, the higher the probability is. However, VC's and EN's efforts on the success probability of the venture project are not the same role; due to the professional skills of [figure omitted; refer to PDF] VCs, their efforts are bigger than the one paid by EN. Thus we can assume that [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , the successful profit in [figure omitted; refer to PDF] period is [figure omitted; refer to PDF] , the unsuccessful profit is 0, and the expected revenue is [figure omitted; refer to PDF] . For research's convenience, we assume that the expected revenue in various periods is equivalent, which is [figure omitted; refer to PDF] , [figure omitted; refer to PDF] . The reasons for giving this hypothesis are showed as follows.
Firstly, if the success possibility [figure omitted; refer to PDF] for venture project is so tiny that the return profit [figure omitted; refer to PDF] will be great. On the contrary, if the success probability [figure omitted; refer to PDF] is so big that the return profit [figure omitted; refer to PDF] will be tiny. These would accord with the characteristic of the venture project.
Secondly, if the return in every period is increasing gradually, then the EN's and [figure omitted; refer to PDF] VCs' decisions will require larger cash flow in the future; if the return in every period is decreasing gradually, then the ENs' and [figure omitted; refer to PDF] VCs' decision will require more cash flow in the first place, which are meaningless to study. In spite of such a reason, these hypotheses are still very strict. Relaxing this hypothesis will also work, but the model will be more complicated.
After [figure omitted; refer to PDF] VCs invest the capital, the venture project will be controlled by [figure omitted; refer to PDF] VCs. If venture project succeeds, EN's profit share confirmed by [figure omitted; refer to PDF] VCs is [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ) in every stage; namely, the share gained by VC [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ) in stage [figure omitted; refer to PDF] is [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ), and then EN [figure omitted; refer to PDF] 's profit is [figure omitted; refer to PDF] and obviously needs [figure omitted; refer to PDF] ; if the venture project in stage [figure omitted; refer to PDF] fails, the fixed income that [figure omitted; refer to PDF] VCs need to be paid for EN in every stage is [figure omitted; refer to PDF] , and we call ( [figure omitted; refer to PDF] ) stock investment contract. Considering the time value of EN's profit, the discount factor is 1, and VC [figure omitted; refer to PDF] 's ( [figure omitted; refer to PDF] ) discount factor is 1.
The sequence of events in the game is depicted in Figure 2.
Figure 2: The time line.
[figure omitted; refer to PDF]
4. The Multistage Decision Model and Solution
According to this time line and modeling method of [5], modeling process and its solving are as follows.
The [figure omitted; refer to PDF] -period profit of VC [figure omitted; refer to PDF] is shown as [figure omitted; refer to PDF] : [figure omitted; refer to PDF]
According to the recursive relationship in (1), the first-period profit of the venture investor is shown as [figure omitted; refer to PDF]
The VC [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ) is more concerned about the whole project investment's returns; thus, the optimization problem (I) will be shown as [figure omitted; refer to PDF]
The VC [figure omitted; refer to PDF] ( [figure omitted; refer to PDF] ) chooses share [figure omitted; refer to PDF] , and his [figure omitted; refer to PDF] -period profit will be represented by [figure omitted; refer to PDF] , which can be shown as the following equation: [figure omitted; refer to PDF]
It is obvious that [figure omitted; refer to PDF] .
In this condition, the [figure omitted; refer to PDF] -period profit [figure omitted; refer to PDF] will be transferred into [figure omitted; refer to PDF]
It is assumed that the EN is shortsighted and that all he wants is to maximize the profit in this period, so we can arrive at the optimization problem (II) as follows: [figure omitted; refer to PDF]
4.1. The Optimal Decision for the EN
The first-stage condition of the optimization problem (II) about [figure omitted; refer to PDF] is shown as [figure omitted; refer to PDF]
The optimal solution [figure omitted; refer to PDF] solved by (7) is shown as [figure omitted; refer to PDF]
We can draw the first conclusion (marked as Conclusion 1) according to (8).
Conclusion 1.
[figure omitted; refer to PDF] VC's optimal effort is negatively related to his share. [figure omitted; refer to PDF] VC's optimal effort is positively related to the future earnings. [figure omitted; refer to PDF] VC's optimal effort is negatively related to the fixed income. [figure omitted; refer to PDF] VC's optimal effort is positively related to VC's effort.
Proof.
[figure omitted; refer to PDF] , [figure omitted; refer to PDF] , and [figure omitted; refer to PDF] can be easily demonstrated from the coefficient of [figure omitted; refer to PDF] .
[figure omitted; refer to PDF] can be demonstrated as follows.
According to the assumption 4 ( [figure omitted; refer to PDF] ), it can be concluded that the character of [figure omitted; refer to PDF] equals the counterpart of [figure omitted; refer to PDF] . So we can work with [figure omitted; refer to PDF] to simplify the problem [figure omitted; refer to PDF]
Conclusion 2.
In each period, EN expects the income share to decrease as the time goes by within the prescribed efforts. Specifically, he wants to pay more in early stages.
Proof.
Randomly, [figure omitted; refer to PDF] , [figure omitted; refer to PDF]
According to (7) [figure omitted; refer to PDF]
The result of putting (11) into (10) is [figure omitted; refer to PDF]
Optimization question (II) in [figure omitted; refer to PDF] can be transferred into [figure omitted; refer to PDF]
Because of [figure omitted; refer to PDF] , (14) can be transferred into [figure omitted; refer to PDF]
The partial derivative about [figure omitted; refer to PDF] in (15) is [figure omitted; refer to PDF]
The result of putting (11) into (16) is [figure omitted; refer to PDF]
Using the recurrence relation in (12) and the given [figure omitted; refer to PDF] , there is [figure omitted; refer to PDF]
Thus according to (18) [figure omitted; refer to PDF]
The result of putting (17) into (19) can be shown as follows: [figure omitted; refer to PDF]
Identically [figure omitted; refer to PDF]
The outcome from both (20) and (21) is [figure omitted; refer to PDF]
Equally [figure omitted; refer to PDF] ; thus, Conclusion 2 is proved.
4.2. The Optimal Decision for VC [figure omitted; refer to PDF]
The following is the discussion on optimization decision made by VC [figure omitted; refer to PDF] . According to (3), the first-order condition about effort [figure omitted; refer to PDF] is [figure omitted; refer to PDF]
Thus VC [figure omitted; refer to PDF] 's optimal effort [figure omitted; refer to PDF] should meet the need of (24) as is shown in the following equation: [figure omitted; refer to PDF]
Therefore [figure omitted; refer to PDF]
The result of putting (8) and (25) into (24) is [figure omitted; refer to PDF]
We can derive [figure omitted; refer to PDF] as follows: [figure omitted; refer to PDF]
Conclusion 3.
(i) VC [figure omitted; refer to PDF] 's optimal effort is positively related to the VC [figure omitted; refer to PDF] 's income share.
(ii) VC [figure omitted; refer to PDF] 's optimal effort is related to EN's future income.
Proof.
According to (27), (i) the proof of Conclusion 3(i) is shown as follows: [figure omitted; refer to PDF]
According to the early assumption and the real implication of [figure omitted; refer to PDF] , each item on the right-hand side in the equation is greater than 0; thus [figure omitted; refer to PDF] .
We can easily prove that Conclusion 3(ii) is right. Obviously, because every coefficient of [figure omitted; refer to PDF] in formula (27) is greater than 0, [figure omitted; refer to PDF] .
Conclusion 4.
VC [figure omitted; refer to PDF] 's share of profits of expected payment is increased with the increase of time. Namely, he wants to pay less in early phase.
Proof.
The first-order condition about [figure omitted; refer to PDF] in (1) is [figure omitted; refer to PDF]
Given [figure omitted; refer to PDF] in (1), (1) can be transferred into (30) as follows: [figure omitted; refer to PDF]
According to formula (30), there is the consequence of [figure omitted; refer to PDF] : [figure omitted; refer to PDF]
The first-order condition of (31) is [figure omitted; refer to PDF]
There is [figure omitted; refer to PDF] and combining (32) and (29), there is also a transformation as follows: [figure omitted; refer to PDF]
Given arbitrary [figure omitted; refer to PDF] and [figure omitted; refer to PDF] which can also fulfill [figure omitted; refer to PDF] , we can get the following from (3): [figure omitted; refer to PDF]
The first-stage condition of [figure omitted; refer to PDF] and [figure omitted; refer to PDF] in (34) is [figure omitted; refer to PDF]
In (35), the [figure omitted; refer to PDF] and [figure omitted; refer to PDF] are the same in other parts of stages according to arbitrary except that [figure omitted; refer to PDF] and [figure omitted; refer to PDF] are different.
At the same time, because [figure omitted; refer to PDF] , [figure omitted; refer to PDF]
Thus one has the following according to (35): [figure omitted; refer to PDF]
According to the restriction of [figure omitted; refer to PDF] in (33) and the hypothesis of probability that [figure omitted; refer to PDF] , we can get [figure omitted; refer to PDF]
Consequently, to any arbitrary [figure omitted; refer to PDF] and [figure omitted; refer to PDF] which meet with [figure omitted; refer to PDF] , we can always have [figure omitted; refer to PDF] ; thus Conclusion 4 is proved.
5. Multistage Optimal Investment Contracts
In Section 3, we mainly research into the optimal effort level between VCs and EN, which naturally leads us to another question which is, according to optimal effort levels [figure omitted; refer to PDF] and [figure omitted; refer to PDF] , what is the optimal investment contract? That is to say, we need to discuss optimal shared coefficient [figure omitted; refer to PDF] and optimal fixed income [figure omitted; refer to PDF] . The result is presented by Conclusion 5.
Conclusion 5.
During the multistage venture capital joined by multiple VCs, if the venture project fails in the stage [figure omitted; refer to PDF] , the optimal contract offered by VC will go as [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , and [figure omitted; refer to PDF] ; if it succeeds, there would be a stage [figure omitted; refer to PDF] .
When [figure omitted; refer to PDF] , there follows the optimal contract offered by VC: [figure omitted; refer to PDF]
When [figure omitted; refer to PDF] , the optimal contract offered by VC goes to [figure omitted; refer to PDF] , [figure omitted; refer to PDF] .
Proof.
Firstly, we demonstrate the case when the project fails.
When [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , there would be [figure omitted; refer to PDF]
It leads to [figure omitted; refer to PDF]
Because [figure omitted; refer to PDF] , there is [figure omitted; refer to PDF] . Taking [figure omitted; refer to PDF] into the optimal profit, [figure omitted; refer to PDF] , [figure omitted; refer to PDF] must exist.
Then we demonstrate the case when the project succeeds.
When it succeeds, there would be [figure omitted; refer to PDF] , [figure omitted; refer to PDF] . It is not the optimal strategy when [figure omitted; refer to PDF] . If it is, then [figure omitted; refer to PDF] , [figure omitted; refer to PDF] , which means [figure omitted; refer to PDF] , exists. But clearly that strategy of venture investor is optimal when [figure omitted; refer to PDF] is untenable.
When [figure omitted; refer to PDF] , there follows [figure omitted; refer to PDF]
According to (43), [figure omitted; refer to PDF]
And there is [figure omitted; refer to PDF]
So, [figure omitted; refer to PDF]
When [figure omitted; refer to PDF] , there is [figure omitted; refer to PDF] .
Because [figure omitted; refer to PDF] , we can know that [figure omitted; refer to PDF] . As a consequence, when [figure omitted; refer to PDF] , there is [figure omitted; refer to PDF] .
When [figure omitted; refer to PDF] , there is the result that [figure omitted; refer to PDF] .
The practical significance of Conclusion 5 lies in the following.
During a multistage united venture capital investment, there exists a period of [figure omitted; refer to PDF] . Before this period, EN only has a fixed income without later profit sharing; however, after [figure omitted; refer to PDF] , VCs and EN share project proceeds together. Instinctively, for the EN, the shorter the period [figure omitted; refer to PDF] is the better, while for VCs, the longer the period [figure omitted; refer to PDF] is the better. This is because the success of the later stage depends on that of the earlier stages, which stimulate ENs to some extent in the earlier stages when return is paid later. As a consequence, the return should be paid to ENs as late as possible, which will serve as the most convenient and inexpensive way of arranging incentive contract. Now we come across another problem: whether we can find out the optimal period [figure omitted; refer to PDF] . To complete the reasoning, we need further research because of the model's complexity.
During multistage united venture capital investments, there exists a period of [figure omitted; refer to PDF] . Before this period, ENs only have a fixed income without later profit sharing while after, VCs and ENs share project proceeds. Instinctively, for ENs, the shorter is the better when considering period [figure omitted; refer to PDF] , while the longer is the better for VCs, for success of the late stage depends on that of the early one, which stimulate ENs in the early stage to some extent when return is paid later. As a consequence, the return should be paid to ENs as late as possible, which will serve as the most convenient and inexpensive way of incentive contract arrangement. Now we come across another problem: whether we can find out the optimal period [figure omitted; refer to PDF] . To complete the reasoning, we need further researches because of the complexity of the model.
6. Conclusions
This paper focuses on a venture investment problem in which several VCs make an alliance to invest in the same venture project in a venture capital market. Whatever financing pattern we take, once what to invest on has already been decided by VCs, how to achieve the venture project and how to realize its added value will become the common goals for both VCs and ENs. This requires them to positively participate in the development of the venture project and to play dual roles both in providing financing funds and in promoting added value of the project's output. In the process of development, the startup company needs joint effort of VCs and ENs to promote growth. However, improving the managerial capabilities of this venture company as well as lowering company operating costs requires ENs' efforts to promote the creative value of core technology and requires as well VCs' offering specialized services, which will obviously result in the information asymmetry of two parties and therefore further bilateral moral hazard of investment.
Further, in the operation practice of venture capital, from entering the venture enterprise to its exit, there remains a long-term process [5, 29]. When we built the game model, the ENs' and VCs' efforts, the sharing contract, and the project's operation are all dispersed into the multistaged problem. Multistage dynamic game model is thus constructed, and its significance is revealed as follows. [figure omitted; refer to PDF] The model is consistent with the practice of venture capital. [figure omitted; refer to PDF] Multistaged investment is a way to deal with this sort of moral hazard.
In terms of the considerations mentioned above, this paper separates the efforts of venture investment, VCs and EN, into multiple phases and then establishes the Stackelberg game model in a multistaged venture investment. By analyzing our model, dynamic subgame perfect Nash equilibrium (dynamic SPNE) is given, and ENs' and VCs' optimization efforts are therefore resolved. We have also collected some significant results, specifically as follows.
(1) Optimal efforts of ENs are positively correlated with their future earnings and effort put out by VCs, while they negatively correlate with shares of sharing of VCs and the fixed return.
(2) Venture investment is regarded as a multistage investment; due to the uncertainty of future earnings, ENs expect earlier cash and thus want to obtain more revenue in earlier stages and less revenue in later stages. This is to say that ENs hope to be paid more at early stages and less at later ones.
(3) Optimal efforts of VCs are positively correlated with their shares of sharing and the future earnings of ENs.
(4) The goal of VCs is precisely opposite to ENs. VCs are expecting more profits in the future. Therefore, in earlier stages VCs hope to get less benefits, while ENs expect more profits.
However, our research is still limited with some problems that need further discussion, especially the following.
Firstly, the paper has studied issues about joint investment which requires equality among multiple VCs. But in practice, some of them may gain more advantages because of their stronger companies and larger capitals. This is in fact what we called syndication market, and, therefore, in the market we should look into multiple-staged investments.
Secondly, the paper has studied the optimal strategies of both VCs and ENs and in the meantime leaves out further considerations about the optimal exit point of VCs.
Thirdly, among multiple strategies, strategies of the later stage would be affected by the earlier ones, and this sluggish relationship needs a further discussion.
Fourthly, the amount of financing needed by ENs and capital held by VCs are both limited. Then How many venture capitalists should be financed under these constraints?
Lastly, we have only studied venture capital investment problems with a discrete multistaged model. We might also need to explore deeply the venture investment with a continuous time model. This remains an aspect that needs a further discussion.
Acknowledgments
The author is particularly grateful to the associate editor and reviewers for thoughtful, valuable discussions and suggestions. The author acknowledges the financial support by Humanities and Social Science Project of Ministry of Education of China (14XJCZH001) and by the Fundamental Research Funds for the Central Universities (JBK150210, JBK130401). He also thanks this student Litian Xu, Yiging Zhao, and Qinyu Chen for the contribution to this paper.
Conflict of Interests
The author declares that there is no conflict of interests regarding the publication of this paper.
[1] H. Xu, D. F. Wan, J. Xu, "Venture capital syndication's member background organizational structure, and IPO underpricing: an empirical research based on the GEM of China," Systems Engineering Theory and Practice , vol. 35, no. 1, pp. 1-9, 2015.
[2] C. Casamatta, C. Haritchabalet, "Experience, screening and syndication in venture capital investments," Journal of Financial Intermediation , vol. 16, no. 3, pp. 368-398, 2007.
[3] T. Tykvova, A. Schertler, "Does syndication with local venture capitalists moderate the effects of geographical and institutional distance?," Journal of International Management , vol. 20, no. 4, pp. 406-420, 2014.
[4] Y. V. Hochberg, A. Ljungqvist, Y. Lu, "Whom you know matters: venture capital networks and investment performance," The Journal of Finance , vol. 62, no. 1, pp. 251-301, 2007.
[5] R. Elitzur, A. Gavious, "A multi-period game theoretic model of venture capitalists and entrepreneurs," European Journal of Operational Research , vol. 144, no. 2, pp. 440-453, 2003.
[6] C. Casamatta, "Financing and advising: optimal financial contracts with venture capitalists," Journal of Finance , vol. 58, no. 5, pp. 2059-2085, 2003.
[7] K. M. Schmidt, "Convertible securities and venture capital finance," Journal of Finance , vol. 58, no. 3, pp. 1139-1166, 2003.
[8] T. Hellmann, "IPOs, acquisitions, and the use of convertible securities in venture capital," Journal of Financial Economics , vol. 81, no. 3, pp. 649-679, 2006.
[9] T. Hellmann, "On the existence and uniqueness of pairwise stable networks," International Journal of Game Theory , vol. 42, no. 1, pp. 211-237, 2013.
[10] Y. F. Li, Z. F. Zhou, "An incentive contract model for venture capitalist based on the principal-agent relationship," Chinese Journal of Management , vol. 8, no. 6, pp. 872-878, 2011.
[11] W. X. Guo, Y. Zeng, "Doublemoral hazard and the theory of capital structure of venture capital financing," Journal of Management Sciences in China , vol. 12, no. 3, pp. 119-131, 2009.
[12] J.-J. Zheng, P. Zhang, X.-S. Hu, W.-L. Jiang, "Research on bidding strategy and modeling of equity auction based on stochastic differential equations," System Engineering Theory and Practice , vol. 33, no. 4, pp. 893-900, 2013.
[13] W. A. Sahlman, "The structure and governance of venture-capital organizations," Journal of Financial Economics , vol. 27, no. 2, pp. 473-521, 1990.
[14] A. Shliefer, R. W. Vishy, "Liquidation values and debt capacity: a market equilibrium approach," The Journal of Finance , vol. 47, no. 4, pp. 1343-1366, 1997.
[15] R. Y. Ying, Y. Q. Zhao, "An analysis of incentive mechanism and agent cost in venture capital," Journal of Finance and Economics , vol. 30, no. 6, pp. 22-29, 2004.
[16] W.-X. Guo, Y. Su, Y. Zeng, "Capital structure of venture capital finance under double moral hazard and risk aversion of entrepreneur," System Engineering Theory and Practice , vol. 30, no. 3, pp. 408-418, 2010.
[17] X. M. Liu, X. G. Wen, L. L. Ding, "Study on double moral hazard prevention in venture capital," Science and Technology Management Research , no. 5, pp. 212-215, 2010.
[18] B. Wu, X. X. Xu, J. M. He, "Double-side moral hazard and convertible bond design in venture capital firms," Journal of Management Sciences in China , vol. 15, no. 1, pp. 11-21, 2012.
[19] H. Jiang, Z. H. Li, "Toward the compensation incentive in venture capital: based on multi principal agene model," Modern Economic Sciences , vol. 30, no. 5, pp. 118-128, 2008.
[20] G. Y. Ai, J. Xu, Y. Yu, "The reputation incentive mechanism of venture capital investment under relative performance evaluation," Journal of Shanghai Jiao Tong University , vol. 41, no. 7, pp. 1134-1137, 2007.
[21] Y. Chan, "On the positive role of financial intermediation in allocation of venture capital in a market with imperfect information," The Journal of Finance , vol. 38, no. 5, pp. 1543-1568, 1983.
[22] J. Xu, A. M. Wang, H. M. Chen, "Research on control right incentive mechanism of venture capital based on reputation," Journal of Industrial Engineering and Engineering Management , vol. 21, no. 3, pp. 67-71, 2007.
[23] P. Gompers, J. Lerner The Venture Capital Cycle , MIT Press, Cambridge, Mass, USA, 1999.
[24] A. R. Admati, P. Peiderer, "Robust financial contracting and the role for venture capitalists," Journal of Finance , vol. 49, no. 2, pp. 371-402, 1994.
[25] S. Dahiya, K. Ray, "Staged investments in entrepreneurial financing," Journal of Corporate Finance , vol. 18, no. 5, pp. 1193-1216, 2012.
[26] Y.-H. Jin, Y.-Q. Xi, Z.-X. Ye, "Study of multi-period dynamic financial model of venture capital considering reputation," System Engineering Theory and Practice , vol. 23, no. 8, pp. 76-80, 2003.
[27] S. D. Zhang, X. D. Wei, "Analysis on multi-stage investment game of double moral hazard in venture capital," Nankai Economic Studies , no. 6, pp. 142-150, 2008.
[28] R. K. Sah, J. E. Stiglitz, "The architecture of economic systems: hierarchies and polyarchies," American Economic Review , vol. 76, pp. 716-727, 1986.
[29] X. L. Zhang, D. L. Yang, "The design of incentive contracts about syndication in venture capital," Chinese Journal of Management Science , vol. 15, no. 1, pp. 106-111, 2007.
[30] J. A. Brander, R. Amit, W. Antweiler, "Venture capital syndication: improved venture selection versus the value added hypothesis," Journal of Economics and Management Strategy , vol. 11, no. 3, pp. 423-452, 2002.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2015 Meng Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
If the venture project has a great demand of investment, venture entrepreneurs will seek multiple venture capitalists to ensure necessary funding. This paper discusses the decision-making process in the case that multiple venture capitalists invest in a single project. From the beginning of the project till the withdrawal of the investment, the efforts of both parties are long term and dynamic. We consider the Stackelberg game model for venture capital investment in multiple periods. Given the optimal efforts by the entrepreneurs, our results clearly show that as time goes, in every single period entrepreneurs will expect their share of revenue paid to shrink. In other words, they expect a higher ex ante payment and a lower ex post payment. But, in contrast, venture capitalists are expecting exactly the opposite. With a further analysis, we also design an optimal contract in multiple periods. Last but not the least, several issues to be further investigated are proposed as well.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer