Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Increasing soil N not only aggravates calcium (Ca) stress by stimulating Ca leaching from the soil but also impacts the sensitivity of plants to Ca stress. However, how increasing N influences the soil Ca demand of seedlings is largely unknown. We studied the influence of different concentrations of exogenous Ca (i.e., 0, 200, 400, 600, and 800 mg⋅kg−1 Ca2+) on the growth, photosynthesis, Ca absorption, and intrinsic water use efficiency (iWUE) of mulberry (Morus alba) seedlings under two N levels (i.e., 200 and 600 mg⋅kg−1 NH4NO3). We found that there was an optimal concentration of soil Ca for the growth and net photosynthetic rate (Pn) of mulberry seedlings; the optimal Ca concentration was 200 mg⋅kg−1 under low N conditions and 400 mg⋅kg−1 under high N conditions. Therefore, the application of N fertilizer increased the optimal Ca concentration. Different from the unimodal relationship between biomass and Ca levels, the iWUE of mulberry was significantly and positively correlated with soil Ca levels. At the same time, except under the 800 mg⋅kg−1 Ca treatment, the soil Ca levels were reflected by foliar Ca concentrations. The N deposition, large-scale N fertilizer application, and drought increase Ca demand in plants, thus causing the application of Ca fertilizer to be necessary in low-Ca soil while alleviating Ca stress in high-Ca soil. The balance between the optimal Ca level needed for growth and drought resistance should be considered when determining the amount of Ca fertilizer required.

Details

Title
Optimal Soil Calcium for the Growth of Mulberry Seedlings Is Altered by Nitrogen Addition
Author
Zhang, Tengzi 1 ; Li, Yanan 2 ; Li, Hui 3 ; Zhang, Songzhu 3 ; Zhou, Yongbin 4 

 College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China 
 College of Forestry, Shenyang Agricultural University, Shenyang 110866, China 
 College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China 
 Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China 
First page
399
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779536343
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.