Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the application of Taguchi design of experiment and Autodesk Moldflow® simulation in finding the optimal processing parameters for the manufacturing of natural fiber–polymer composite products. The material used in the study is a composite of recycled thermoplastic reinforced with 10% wood fibers. For the study, four critical processing parameters, namely compression time, mold temperature, melt temperate, and pressure, were selected for optimization. Process analysis was carried out in Moldflow® utilizing a combination of process parameters based on an L9 orthogonal array. Later, the warpage output from Moldflow® simulation was converted into a signal-to-noise (S/N) ratio response, and the optimum values of each processing parameter were obtained using the smaller-the-better quality characteristic. The results show that the optimum values were 60 °C, 40 s, 210 °C, and 600 kN for the mold temperature, compression time, melt temperature, and pressure, respectively. Afterward, a confirmation test was performed to test the optimum parameters. Using analysis of variance (ANOVA), melt temperature was found to be the most significant processing parameter, followed by mold temperature, compression time, and pressure.

Details

Title
Optimization of Compression Molding Process Parameters for NFPC Manufacturing Using Taguchi Design of Experiment and Moldflow Analysis
Author
Chauhan, Vardaan  VIAFID ORCID Logo  ; Kärki, Timo; Varis, Juha
First page
1853
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584501851
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.