1. Introduction
Seawater desalination in water treatment plants has evolved considerably in the last five decades, in which the desalination process and its technology have changed and become more and more profitable and efficient. Initially, the water desalination process was a thermal process, but it has been changing with scientific technological advances towards a process of reverse osmosis, which dominates the current market [1,2,3,4,5].
Following the state of the art in water desalination and the evolution of this process not only at the regional Canary level but also at national and international levels, there are now different desalination processes, such as Vapor Compression (VC), Multi-Effect Distillation (MSF), Multi-Stage Distillation (MED) and reverse osmosis, which currently account for 65% of all the processes used around the world [4,5,6,7].
The main objective is to study the improvements in seawater desalination, based on the reduction of energy consumption in the production of fresh water. Consequently, reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced, and therefore it occupies a privileged position in the sector. So far, in the 21st century, research efforts in water desalination have focused on advances in reverse osmosis membranes, with higher surface area and lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process [8,9,10].
The operation, maintenance and handling of the membranes have been studied in detail, due to their importance in energy savings, detailing how to optimize all the processes in which they are involved to improve energy efficiency [7].
In the same way, we analyze data from the different seawater desalination plants we visited, obtaining data on thousands of hours of operation in many cases. We have developed techniques to improve the energy efficiency of seawater desalination membranes in strict compliance with the water quality parameters established by national and international regulations, or even by organizations such as the World Health Organization [11,12,13,14,15,16,17,18,19].
To carry out a general cost analysis of the components or elements of the plant and their operation, it is necessary to determine the direct costs, indirect costs and other considerable expenses for this purpose [20,21,22,23,24].
Among the direct costs, we can highlight the acquisition cost of the elements, both initial and replacement, and among the most significant expenses are those related to the initial capital investment, operation and maintenance [25,26,27].
2. Materials and Methods
As stated earlier, energy consumption depends on the permeate water quality required and the reverse osmosis membrane model installed in the desalination plant. Therefore, we developed a methodology, in the following equations, to calculate the permeate quality–cost ratio [15,16,17,18,19].
CEE = f1 × EE = f1 × Eb/µe = f1 × Eh/(µb × µe) = f1 × ρ × g × hb/(c × µb × µe)(1)
Q = Q′/c (2)
Ph = ρ × g × Q × hb = ρ × g × Q’/c × hb(3)
Eh = Ph/Q′ = ρ × g × hb/c(4)
EB = Eh/µb(5)
EE = EB/µe(6)
hb(año 1–5) = (1.2 × tm + 0.6) + hb(año 0) (7)
c: Plant recovery.
ρ: Fluid density (1000 kg/m3 for water).
g: Acceleration of gravity (generally adopted: 9.81 m/s2).
hb: Manometric pump height (m).
CEE: Cost of electricity per cubic meter of water produced.
f1: Factor about the price of the electric energy consumed EUR/kWh.
Ph: Hydraulic power transmitted to water.
Pe: Power consumption.
Q′: Permeate flow rate.
Q: Feed rate.
µb: High pressure pump performance.
µe: Electrical performance of the high-pressure pump.
PB: Pump power.
EE: Electrical energy consumed per cubic meter of water produced.
EB: Total energy consumed by the pump per cubic meter of produced water.
Eh: Hydraulic energy per cubic meter of produced water.
δE: Electrical losses.
δh: Hydraulic losses.
δm: Mechanical pump losses.
hb: Pump head (m).
tm: Age of the membrane.
Figure 1 below shows the energy block diagram, which includes the electrical, hydraulic and mechanical pressure losses that occur in the process.
General Analysis of Element and Operation Costs
In this sense, and as a guide, according to data from a construction company of desalination plants in Gran Canaria with more than 100 references in the market, it should be noted that the cost of the membranes in a seawater desalination plant represents approximately 13% of the total investment in the facility’s equipment. The rest of the components (high-pressure pump, booster pump, pressure pipes, pre-treatment, etc.) represent 87% of the total amount, not including industrial profit and before taxes [1,2,28].
Table 1 and Figure 2 show all the significant variables that affect operating costs per cubic meter of water produced [3,4,5,6,7].
In this sense, it is demonstrated that the cost of energy consumption in the pumps and mainly in the high-pressure pump is by far the most significant of a seawater desalination plant, and we can reduce it considerably with the introduction of last-generation reverse osmosis membranes, which were confirmed to be suitable through the same through-plant pilots [29,30].
If the membranes are not replaced, an action that has the lowest cost of those studied, this will have a negative impact with a considerable increase in the energy consumption of the high-pressure pump, which very significantly affects the cost per m3 of water produced, as discussed below [31,32,33,34].
In Figure 3 and Figure 4, the most important issues of this model are represented, which are the costs, energy consumption, water quality and environment.
A reduction in energy consumption will have a direct impact on environmental improvement and we study this through the carbon footprint produced by these desalination plants and their ecological footprint, with the latter as a future line of action. The corresponding diagram according to Figure 4 is shown below.
To produce a quantity of water from a reverse osmosis plant, a quantity of electrical energy must be consumed, and to generate this energy in a conventional electrical network, emissions in the form of greenhouse gases are emitted.
The magnitude of these emissions depends on the set of technologies that make up the energy generation system of the electrical network to which the water production plant is connected. The energy produced by this set is often referred to as the energy mix, which tends to depend largely on the territory and energy policy [3,4].
In relation to territorial dependence, electricity networks generally have energy mixes that cause higher greenhouse gas emissions, as they generally have systems based on lower performance technologies. These electrical energy production technologies can mainly be classified as two types: Conventional and renewable [3].
Within the conventional technologies, which have a direct impact on the carbon footprint of the installations, several can be considered: Diesel engines, gas turbines, combined cycles and steam turbines, which generally have different performances and quantities of emissions. On the other hand, there are technologies based on renewable energies, such as solar photovoltaic, wind, waves, etc. [4,5].
Therefore, in order to reduce greenhouse gas emissions, it is possible to propose the generation of electrical energy necessary for water production in the same facility through hybrid energy systems. These hybrid energy systems can be composed of several types of technologies, in which the largest amount of energy from renewable sources tends to be integrated with the support of an energy storage system or conventional technology such as a diesel engine [3].
Therefore, a methodology can be proposed to achieve the stable operation of a high-efficiency diesel engine with a small integrated autonomous diesel engine and a photovoltaic solar energy generating system to power a reverse osmosis plant, thus reducing the greenhouse gas emissions associated with water production. This application would be very useful in hotel complexes, private facilities, industries, isolated areas, etc. [3].
For the specific case of seawater desalination plants in the Canary Islands, with regard to the production of seawater desalination plants, the following permeate flows can be confirmed: Gran Canaria (220,870 m3/d), Tenerife (106,034 m3/d), Fuerteventura (90,755 m3/d) and Lanzarote (87,480 m3/d). These produce a significant carbon footprint with respect to the overall footprint of each island, especially on Fuerteventura and Lanzarote. In this sense, renewable energies can make a great contribution, mainly through wind and solar photovoltaics. For example, Fuerteventura and Lanzarote are windy islands with high solar radiation all year round, which also have large areas of flat land suitable for these installations. These installations could be for the energy consumption of public desalination plants, or for those that are private, which are normally smaller and can also be self-supplied with renewable energies and a diesel engine for the security of the electricity supply at all times without resorting to the island network, as may be the case of hotels or isolated areas where the electricity network does not reach. In Gran Canaria and Tenerife, it is also possible to implement this, although the orography is more complicated throughout the year in the coastal areas where the seawater desalination plants are located, as the solar radiation and the winds are quite significant, especially in the months between June and September with sunnier days and trade winds. Therefore, the possibility of introducing renewable energies for the supply of electricity to seawater desalination plants in the Canary Islands is studied in order to reduce the carbon footprint and the ecological footprint of the sector, due to the considerable influence of the whole archipelago.
Similarly, to calculate the ecological footprint, we follow previous methodology [11,12,13,14], which is expressed in Table 2.
3. Results
Taking into account these parameters, the typical production of a seawater plant of 100,000 m3/d, Equation (7) explained above and the reverse osmosis membrane software, we obtain the common results presented in Table 3, Table 4 and Table 5.
In Table 3, there is a pressure difference essentially every year, due to the age of the membranes. At start up, in year 0, the elements are new so they need less feed pressure than in years 1 to 5. This is because fouling and scaling could damage the membranes little by little, and consequently, the feed pressure increases every year. This shows that the pressure measured in year 1 grows more in the first year, and from year 2, it is constant at 1.2 bar.
Consequently, one can observe from Figure 5 that the pressure varies over 5 years without replacing the membranes, whereas the energy consumption of the pump increases accordingly.
In Table 4, feed temperature is low (17 °C), and due to this, the feed pressure is higher than in Table 5 where the feed temperature is high (27 °C). At start up, the feed pressure is 6–7 bars higher at 17 °C than at 27 °C. After 5 years, without replacement, the pressure difference is even higher between the minimum and maximum temperature, at around 9–10 bars.
In Table 6, we show the existing seawater desalination plants in the Canary Islands, including consumption, and the introduction of renewable energies.
Table 7 shows the existing seawater desalination plants in the Canary Islands including the carbon and ecological footprints.
Figure 6 shows the most significant plants in the Canary Islands, in terms of size, that produce the largest share of the ecological footprint mentioned above. Moreover, the positions of the RO desalination plants are shown on the map, including the permeate flow of each one in the picture.
Considering the type of specific environmental impact indicators [10], the results are classified according to the non-renewable technology and island in Table 8 (2019).
Table 9 presents the above values per MW of installed power on each island.
Similarly, we can calculate the CO2 footprint per MWh taking into account the thermal consumption by technology and island in Table 10 and Table 11.
4. Conclusions
The most important conclusions obtained from this study are the following:
-. By reducing the operation costs outlined in this article, it is possible to improve the energy efficiency of the system.
-. To reduce the carbon footprint and ecological footprint, the energy consumption needs to be decreased.
-. There are different results regarding the optimization of energy efficiency and environmental footprints.
-. These conclusions of the study may serve as a tool for the decision-making processes related to improving energy efficiency in seawater reverse osmosis plants.
-. The main objective was to study the improvements in seawater desalination based on the reduction of energy consumption in the production of fresh water.
-. Reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced.
-. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process.
-. Considering the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve energy efficiency.
-. Energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the desalination plant.
F.L.: Writing—original draft, Methodology, Formal analisys, Revision; A.R.: Writing—review & editing, Methodology, Software, Revision; S.O.P.-B.: Revision, Validation, Resources. All authors have read and agreed to the published version of the manuscript.
This research was co-funded by the INTERREG V-A Cooperation, Spain-Portugal MAC (Madeira-Azores-Canarias) 2014–2020 program and the MITIMAC project (MAC2/1.1a/263).
Not applicable.
Not applicable.
Not applicable.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Operation costs.
Operation Cost | Nomenclature | Percentage (%) |
---|---|---|
Membranes replacement | Cm | 4 |
Reagents consumption | Cr | 11 |
Chemical cleanings | Cq | 2 |
Maintenance | Cm | 10 |
Staff | Cp | 11 |
Pumps energy consumption | Ce | 62 |
Average and equivalent CO2 absorption per hectare of the different surfaces of planet Earth. Surface area equivalence factors.
Category Surfice | ABS. Average (tCO2/ha/Year) | Surface (Millions ha) | % | ABS. Hectarea Equivalent (tCO2/ha/Year) | Equivalence Factor (fi) |
---|---|---|---|---|---|
Forests | 19.35 | 3858.10 | 7.56 | 1.46 | 9.66 |
Crops | 8.09 | 1958.32 | 3.84 | 0.31 | 4.04 |
Medows and pastures | 2.44 | 3363.72 | 6.59 | 0.16 | 1.22 |
Oceans, seas, etc… | 0.10 | 36,010.00 | 70.60 | 0.07 | 0.05 |
Deserts | 0.00 | 3600.00 | 7.06 | 0.00 | 0.00 |
Others | 0.00 | 2217.06 | 4.35 | 0.00 | 0.00 |
Total Surface | 51,007.20 | 2.00 | 1.00 |
Pressure increases without membrane replacement at 22 °C.
Year | Pressure (bar) | Power (kW) | Energy (kWh/d) | Cost (€/d) |
---|---|---|---|---|
0 | 66.6 | 10,023.5 | 240,564.9 | 21,625.6 |
1 | 68.4 | 10,294.4 | 247,066.7 | 22,210.1 |
2 | 69.6 | 10,475.0 | 251,401.2 | 22,599.7 |
3 | 70.8 | 10,655.7 | 255,735.7 | 22,989.4 |
4 | 72.0 | 10,836.3 | 260,070.2 | 23,379.0 |
5 | 73.2 | 11,016.9 | 264,404.7 | 23,768.7 |
Pressure increases without membrane replacement at 17 °C.
Year | Pressure (bar) | Power (kW) | Energy (kWh/d) | Cost (€/d) |
---|---|---|---|---|
0 | 69.5 | 10,460.0 | 251,039.9 | 22,567.2 |
1 | 72.6 | 10,926.5 | 262,237.5 | 23,573.8 |
2 | 74.4 | 11,197.4 | 268,739.2 | 24,158.3 |
3 | 76.0 | 11,438.3 | 274,518.5 | 24,677.8 |
4 | 77.5 | 11,664.1 | 279,936.7 | 25,164.9 |
5 | 78.9 | 11,874.8 | 284,993.6 | 25,619.5 |
Pressure increases without membrane replacement at 27 °C.
Year | Pressure (bar) | Power (kW) | Energy (kWh/d) | Cost (€/d) |
---|---|---|---|---|
0 | 62.9 | 9466.6 | 227,200.2 | 20,424.1 |
1 | 65.1 | 9797.7 | 235,146.8 | 21,138.5 |
2 | 66.3 | 9978.3 | 239,481.3 | 21,528.2 |
3 | 67.3 | 10,128.9 | 243,093.4 | 21,852.9 |
4 | 68.3 | 10,279.4 | 246,705.5 | 22,177.6 |
5 | 69.2 | 10,414.9 | 249,956.4 | 22,469.8 |
Existing seawater desalination plants in the Canary Islands, consumption and solution of renewable energies. Source: FCCA 2013, REE 2020 and own elaboration.
Name of the Plant | Production (m3/d) | Consume (kWh/m3) | Island | Habitants per Plant | Renewable Solution |
---|---|---|---|---|---|
Cercado de Don Andrés | 200 | 3.5 | Lanzarote | Irrigation | Photovoltaic |
Lanzarote III 1 | 10,000 | 3.5 | Lanzarote | 10,541 | Wind |
Lanzarote III 2 | 5000 | 3.5 | Lanzarote | 5271 | Wind |
Lanzarote III 3 | 5000 | 3.5 | Lanzarote | 5271 | Wind |
Lanzarote IV | 20,000 | 3.5 | Lanzarote | 21,083 | Wind |
Lanzarote V | 18,000 | 2.4 | Lanzarote | 18,975 | Wind |
Aeropuerto | 700 | 3.04 | Lanzarote | 18,327 | Photovoltaic |
Agua Park | 30 | 3.04 | Lanzarote | 500 | Photovoltaic |
Apartamentos Ficus | 60 | 3.5 | Lanzarote | 120 | Photovoltaic |
Apartamentos Puerto Tahiche | 150 | 3.5 | Lanzarote | 300 | Photovoltaic |
Apartamentos Trebol | 80 | 3.5 | Lanzarote | 160 | Photovoltaic |
Ercros | 2500 | 3.5 | Lanzarote | 11,057 | Wind |
Ercros | 2200 | 3.5 | Lanzarote | 9731 | Wind |
Famara | 350 | 3.5 | Lanzarote | 700 | Photovoltaic |
Hotel Golf y Mar | 90 | 3.5 | Lanzarote | 180 | Photovoltaic |
Hotel Gran Meliá Salinas | 400 | 2.61 | Lanzarote | 800 | Photovoltaic |
Hotel Playa Verde | 250 | 3.5 | Lanzarote | 500 | Photovoltaic |
Hotel Teguise Playa | 250 | 3.5 | Lanzarote | 500 | Photovoltaic |
La Galea | 150 | 3.04 | Lanzarote | 300 | Photovoltaic |
Lanzarote Beach Club II | 70 | 3.04 | Lanzarote | 140 | Photovoltaic |
Las Arenas. Costa Teguise | 80 | 3.04 | Lanzarote | 160 | Photovoltaic |
Playa Roca | 250 | 3.04 | Lanzarote | 500 | Photovoltaic |
Apartamentos Don Paco Castilla | 320 | 2.61 | Lanzarote | 640 | Photovoltaic |
Apartamentos Sol Lanzarote | 350 | 2.61 | Lanzarote | 700 | Photovoltaic |
Cdad Apartamentos CAMP | 2.61 | Lanzarote | Tourism | Photovoltaic | |
Holiday Land S.A. | 3000 | 3.5 | Lanzarote | 6000 | Wind |
Hotel Fariones Playa | 500 | 3.5 | Lanzarote | 1000 | Photovoltaic |
Hotel Playa Azul | 300 | 3.5 | Lanzarote | 600 | Photovoltaic |
Hoteles Canarios S.A. | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Iberhotel | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Zorilla | 40 | 3.04 | Lanzarote | 80 | Photovoltaic |
Hotel Jameos Playa | 336 | 2.61 | Lanzarote | 672 | Photovoltaic |
La Santa Sport I | 250 | 3.5 | Lanzarote | 500 | Photovoltaic |
La Santa Sport II | 250 | 3.5 | Lanzarote | 500 | Photovoltaic |
Ria La Santa | 400 | 3.5 | Lanzarote | 800 | Photovoltaic |
Apartamentos Son Boy Family Suites | 500 | 3.04 | Lanzarote | 1000 | Photovoltaic |
Bungalows Atlantic Gardens | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Costa los Limones S.A. | 350 | 3.5 | Lanzarote | 700 | Photovoltaic |
Hotel Corbeta | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Hotel Costa Calero | 324 | 3.04 | Lanzarote | 642 | Photovoltaic |
Marina Rubicón | 300 | 3.04 | Lanzarote | 600 | Photovoltaic |
Hotel Paradise Island | 300 | 3.04 | Lanzarote | 600 | Photovoltaic |
Hotel Princesa Yaiza | 500 | 3.04 | Lanzarote | 1000 | Photovoltaic |
Hotel Rubicón Palace | 450 | 3.04 | Lanzarote | 900 | Photovoltaic |
Inalsa Sur 1 | 600 | 3.5 | Lanzarote | 1859 | Photovoltaic |
Inalsa Sur 2 | 1200 | 3.5 | Lanzarote | 3718 | Wind |
Inalsa Sur 3 | 3000 | 3.5 | Lanzarote | 9294 | Wind |
Janubio | 3.04 | Lanzarote | Tourism | Photovoltaic | |
Lanzasur Club | 200 | 3.04 | Lanzarote | 400 | Photovoltaic |
Playa Blanca S.A. | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Club Lanzarote | 4500 | 3.5 | Lanzarote | 9000 | Wind |
Apartamentos Moromar | 250 | 3.5 | Lanzarote | 500 | Photovoltaic |
Gea Fonds Numero Uno Lanzarote S.A. | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Grupo Rosa | 1000 | 3.5 | Lanzarote | 2000 | Wind |
Hipotels | 300 | 3.5 | Lanzarote | 600 | Photovoltaic |
Hotel Corona | 300 | 3.5 | Lanzarote | 600 | Photovoltaic |
Hotel Costa Calero S.L. | 300 | 3.04 | Lanzarote | 600 | Photovoltaic |
Hotel Sunbou | 500 | 3.04 | Lanzarote | 1000 | Photovoltaic |
Isla Lobos | 100 | 3.04 | Lanzarote | 200 | Photovoltaic |
Leas Hotel S.A. | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Niels Prahm | 3.5 | Lanzarote | Tourism | Photovoltaic | |
Occidental Hotel Oasis | 250 | 3.04 | Lanzarote | 500 | Photovoltaic |
Playa Flamingo | 200 | 3.04 | Lanzarote | 400 | Photovoltaic |
Tjaereborg Timesharing, S.A. | 500 | 3.04 | Lanzarote | 1000 | Photovoltaic |
Empresa Mixta de Aguas de Antigua, S.L. | 4800 | 3.04 | Fuerteventura | 11,948 | Wind |
Grupo Turístico Barceló, S.L. | 240 | 3.5 | Fuerteventura | 480 | Photovoltaic |
Aguas Cristóbal Franquis, S.L. | 1200 | 3.5 | Fuerteventura | 2400 | Wind |
Anjoca Canarias, S.A. | 3000 | 3.5 | Fuerteventura | 6000 | Wind |
Ramiterra, S.L. | 3000 | 3.04 | Fuerteventura | 6000 | Wind |
Inver Canary Dos, S.L. | 300 | 3.04 | Fuerteventura | 600 | Photovoltaic |
Suministros de Agua de La Oliva, S.A. | 9000 | 3.04 | Fuerteventura | 17,920 | Wind |
Consorcio Abastecimiento de Aguas a Fuerteventura | 4000 | 3.04 | Fuerteventura | 7964 | Wind |
Parque de Ocio y Cultura (BAKU) 1 | 300 | 3.04 | Fuerteventura | 600 | Photovoltaic |
Parque de Ocio y Cultura (BAKU) 2 | 90 | 3.04 | Fuerteventura | 180 | Photovoltaic |
RIU Palace Tres Islas | 100 | 3.5 | Fuerteventura | 200 | Photovoltaic |
RIU Oliva Beach | 400 | 3.5 | Fuerteventura | 800 | Photovoltaic |
Nombredo, S.L. | 500 | 3.5 | Fuerteventura | 1000 | Photovoltaic |
Consorcio Abastecimiento de Aguas a Fuerteventura | 4400 | 3.5 | Fuerteventura | 20,539 | Wind |
Puertito de la Cruz | 60 | 3.5 | Fuerteventura | 120 | Photovoltaic |
Vinamar, S.A. | 3600 | 3.5 | Fuerteventura | 7200 | Wind |
Fuercan, S.L. Cañada del Rio I | 2000 | 3.5 | Fuerteventura | 4000 | Wind |
Fuercan, S.L. Cañada del Rio II | 1000 | 3.04 | Fuerteventura | 2000 | Wind |
Fuercan, S.L. Cañada del Rio III | 2000 | 3.04 | Fuerteventura | 4000 | Wind |
Club Aldiana | 200 | 3.5 | Fuerteventura | 400 | Photovoltaic |
Erwin Sick | 30 | 3.5 | Fuerteventura | 60 | Photovoltaic |
Esquinzo Urbanización II | 1200 | 3.5 | Fuerteventura | 2400 | Wind |
Esquinzo Urbanización III | 1200 | 3.5 | Fuerteventura | 2400 | Wind |
Hotel Sol Élite Los Gorriones 1 | 400 | 3.5 | Fuerteventura | 800 | Photovoltaic |
Hotel Sol Élite Los Gorriones 2 | 400 | 3.5 | Fuerteventura | 800 | Photovoltaic |
Stella Canaris I | 300 | 3.5 | Fuerteventura | 600 | Photovoltaic |
Stella Canaris II | 300 | 3.5 | Fuerteventura | 600 | Photovoltaic |
Stella Canaris III | 250 | 3.5 | Fuerteventura | 500 | Photovoltaic |
Hotel H 10 Playa Esmeralda. | 250 | 3.5 | Fuerteventura | 500 | Photovoltaic |
Hotel “Club Paraíso Playa” | 300 | 3.5 | Fuerteventura | 600 | Photovoltaic |
Urbanización Costa Calma. | 110 | 3.5 | Fuerteventura | 220 | Photovoltaic |
Urbanización Tierra Dorada. | 120 | 3.5 | Fuerteventura | 240 | Photovoltaic |
Zoo-Parque La Lajita. | 1300 | 3.5 | Fuerteventura | 500 | Wind |
Apartamentos Esmeralda Maris | 120 | 3.5 | Fuerteventura | 240 | Photovoltaic |
Hotel H10 Tindaya | 280 | 3.5 | Fuerteventura | 560 | Photovoltaic |
Aparthotels Morasol | 80 | 3.5 | Fuerteventura | 160 | Photovoltaic |
Consorcio Abastecimiento de Aguas a Fuerteventura | 36,500 | 3.5 | Fuerteventura | 39,382 | Wind |
Aeropuerto | 500 | 3.5 | Fuerteventura | 15,439 | Photovoltaic |
GranTarajal | 4000 | 3.5 | Fuerteventura | 14,791 | Wind |
Sotavento, S.A. | 2925 | 3.5 | Fuerteventura | 5850 | Wind |
Arucas-Moya I | 10,000 | 3.5 | Gran Canaria | 45,419 | Wind |
Granja experimental | 500 | 3.5 | Gran Canaria | Irrigation | Photovoltaic |
Granja experimental | 500 | 3.5 | Gran Canaria | Irrigation | Photovoltaic |
Comunidad Fuentes de Quintanilla | 800 | 3.04 | Gran Canaria | Irrigation | Photovoltaic |
Granja experimental | 500 | 3.5 | Gran Canaria | Irrigation | Photovoltaic |
Gáldar-Agaete I | 3000 | 3.5 | Gran Canaria | 16,199 | Wind |
Gáldar II | 7000 | 3.04 | Gran Canaria | 37,799 | Wind |
Agragua | 15,000 | 3.5 | Gran Canaria | Irrigation | Wind |
Guía I | 5000 | 3.5 | Gran Canaria | 6962 | Wind |
Guía II | 5000 | 2.61 | Gran Canaria | 6962 | Wind |
Félix Santiago Melián | 5000 | 2.61 | Gran Canaria | Irrigation | Wind |
Las Palmas III | 65,000 | 3.5 | Gran Canaria | 307,545 | Wind |
Las Palmas IV | 15,000 | 2.61 | Gran Canaria | 70,972 | Wind |
BAXTER S.A. | 100 | 3.5 | Gran Canaria | 200 | Photovoltaic |
El Corte Inglés, S.A. | 300 | 3.5 | Gran Canaria | 3000 | Photovoltaic |
Anfi del Mar I | 250 | 3.5 | Gran Canaria | 500 | Photovoltaic |
Anfi del Mar II | 250 | 3.5 | Gran Canaria | 500 | Photovoltaic |
AQUALING | 2000 | 3.04 | Gran Canaria | 4000 | Wind |
Puerto Rico | 4000 | 3.04 | Gran Canaria | 8000 | Wind |
Puerto Rico I | 4000 | 3.04 | Gran Canaria | 8000 | Wind |
Hotel Taurito | 400 | 3.04 | Gran Canaria | 800 | Photovoltaic |
Hotel Costa Meloneras | 300 | 3.04 | Gran Canaria | 600 | Photovoltaic |
Hotel Villa del Conde | 500 | 3.04 | Gran Canaria | 1000 | Photovoltaic |
Bahia Feliz | 600 | 3.5 | Gran Canaria | 1200 | Photovoltaic |
Bonny | 8000 | 3.5 | Gran Canaria | Irrigation | Wind |
Maspalomas I Mar | 14,500 | 3.5 | Gran Canaria | 19,572 | Wind |
Maspalomas II | 25,200 | 3.04 | Gran Canaria | 34,016 | Wind |
UNELCO II | 600 | 3.5 | Gran Canaria | Industrial | Photovoltaic |
Ayto. San Nicolas | 5000 | 3.04 | Gran Canaria | 7608 | Wind |
Asociación de agricultores de la Aldea | 5400 | 3.04 | Gran Canaria | Irrigation | Wind |
Sureste III | 8000 | 3.5 | Gran Canaria | 133,846 | Wind |
Aeropuerto I | 1000 | 3.5 | Gran Canaria | 24,791 | Wind |
Salinetas | 16,000 | 3.5 | Gran Canaria | 102,424 | Wind |
Aeropuerto II | 500 | 3.5 | Gran Canaria | 12,396 | Photovoltaic |
Hoya León | 1500 | 3.5 | Gran Canaria | Irrigation | Wind |
Bco. García Ruiz | 1000 | 3.5 | Gran Canaria | Irrigation | Wind |
Mando Aéreo de Canarias | 1000 | 3.5 | Gran Canaria | 3000 | Wind |
UNELCO I | 1000 | 3.5 | Gran Canaria | Industrial | Wind |
Anfi del Mar | 1500 | 3.04 | Gran Canaria | 3000 | Wind |
Norcrost. S.A. | 170 | 3.04 | Gran Canaria | 340 | Photovoltaic |
Adeje Arona | 30,000 | 3.04 | Tenerife | 126,728 | Wind |
Gran Hotel Anthelia Park | 3.04 | Tenerife | Tourism | Photovoltaic | |
La Caleta (Ayto. Adeje) | 10,000 | 3.04 | Tenerife | 20,000 | Wind |
UTE Tenerife Oeste | 14,000 | 2.16 | Tenerife | 40,000 | Wind |
Hotel Sheraton La Caleta | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Gran Tacande | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Rocas de Nivaria. Playa Paraíso | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Bahía del Duque. Costa Adeje | 3.04 | Tenerife | Tourism | Photovoltaic | |
Siam Park | 3.04 | Tenerife | Tourism | Photovoltaic | |
Tenerife-Sol S. A. | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Conquistador, P. de Las Américas | 3.04 | Tenerife | Tourism | Photovoltaic | |
Arona Gran Hotel, Los Cristianos | 3.04 | Tenerife | Tourism | Photovoltaic | |
Bonny S.A., Finca El Fraile. | 3.04 | Tenerife | Tourism | Photovoltaic | |
El Toscal, La Estrella (C. Regantes Las Galletas) | 3.04 | Tenerife | Tourism | Photovoltaic | |
Complejo Mare Nostrum, P. Las Américas | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Villa Cortés | 3.04 | Tenerife | Tourism | Photovoltaic | |
Buenavista Golf, S.A. | 3.04 | Tenerife | Tourism | Photovoltaic | |
Rural Teno | 3.04 | Tenerife | Agrícola | Photovoltaic | |
Ropa Rent, S.A. (P.I. Güímar) | 3.04 | Tenerife | Industrial | Photovoltaic | |
Unelco | 600 | 3.5 | Tenerife | Industrial | Photovoltaic |
I.T.E.R. Cabildo de Tenerife | 14 | 3.5 | Tenerife | Industrial | Photovoltaic |
C.T. en P.I. de Granadilla | 3.5 | Tenerife | Industrial | Photovoltaic | |
Bonny S.A., Finca El Confital. | 3.5 | Tenerife | Irrigation | Photovoltaic | |
Polígono Industrial de Granadilla (portátil) | 3.5 | Tenerife | Industrial | Photovoltaic | |
UTE Desalinizadora de Granadilla | 14,000 | 3.04 | Tenerife | 50,146 | Wind |
Guia de ISORA Hoya de la leña | 3.5 | Tenerife | Tourism | Photovoltaic | |
Club Campo Guía de Isora, Abama | 3.5 | Tenerife | Tourism | Photovoltaic | |
Hotel Meliá Palacio de Isora, Alcalá. | 3.5 | Tenerife | Tourism | Photovoltaic | |
Loro Parque | 3.5 | Tenerife | Tourism | Photovoltaic | |
Santa Cruz I | 20,000 | 3.04 | Tenerife | 204,856 | Wind |
Recinto Portuario Santa Cruz (portátil) | 3.04 | Tenerife | Industrial | Photovoltaic | |
CEPSA | 1000 | 3.04 | Tenerife | Industrial | Wind |
Hotel Playa la Arena | 3.04 | Tenerife | Tourism | Photovoltaic | |
Hotel Jardín Tecina | 2000 | 3.04 | La Gomera | 4000 | Wind |
La Restinga | 500 | 3.5 | El Hierro | 297 | Photovoltaic |
La Restinga | 1200 | 3.04 | El Hierro | 712 | Wind |
El Cangrejo | 1200 | 3.04 | El Hierro | 2478 | Wind |
El Cangrejo | 1200 | 3.04 | El Hierro | 2478 | Wind |
El Golfo | 1350 | 3.04 | El Hierro | 4093 | Wind |
Existing seawater desalination plants in the Canary Islands. Source: FCCA 2013 and REE 2020.
Name of the Plant | Production (m3/d) | Consume (kWh/m3) | Economic Cost (€/m3) | Carbon Footprint (tCO2/m3) | Ecological Footprint (ha/Year/tCO2/m3) |
---|---|---|---|---|---|
Cercado de Don Andrés | 200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Lanzarote III 1 | 10,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Lanzarote III 2 | 5000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Lanzarote III 3 | 5000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Lanzarote IV | 20,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Lanzarote V | 18,000 | 2.4 | 0.02773597 | 0.001566 | 0.00072 |
Aeropuerto | 700 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Agua Park | 30 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Apartamentos Ficus | 60 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Apartamentos Puerto Tahiche | 150 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Apartamentos Trebol | 80 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Ercros | 2500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Ercros | 2200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Famara | 350 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Golf y Mar | 90 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Gran Meliá Salinas | 400 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
Hotel Playa Verde | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Teguise Playa | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
La Galea | 150 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Lanzarote Beach Club II | 70 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Las Arenas, Costa Teguise | 80 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Playa Roca | 250 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Apartamentos Don Paco Castilla | 320 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
Apartamentos Sol Lanzarote | 350 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
Cdad Apartamentos CAMP | 2.61 | 0.030162867 | 0.001566 | 0.000783 | |
Holiday Land S.A. | 3000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Fariones Playa | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Playa Azul | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hoteles Canarios S.A. | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Iberhotel | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Zorilla | 40 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Jameos Playa | 336 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
La Santa Sport I | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
La Santa Sport II | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Ria La Santa | 400 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Apartamentos Son Boy Family Suites | 500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Bungalows Atlantic Gardens | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Costa los Limones S.A. | 350 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Corbeta | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Hotel Costa Calero | 324 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Marina Rubicón | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Paradise Island | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Princesa Yaiza | 500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Rubicón Palace | 450 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Inalsa Sur 1 | 600 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Inalsa Sur 2 | 1200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Inalsa Sur 3 | 3000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Janubio | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Lanzasur Club | 200 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Playa Blanca S.A. | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Club Lanzarote | 4500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Apartamentos Moromar | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Gea Fonds Numero Uno Lanzarote S.A. | 3.5 | 3.5 | 0.001623494 | 0.0021 | |
Grupo Rosa | 1000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hipotels | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Corona | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Costa Calero S.L. | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Sunbou | 500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Isla Lobos | 100 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Leas Hotel S.A. | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Niels Prahm | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Occidental Hotel Oasis | 250 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Playa Flamingo | 200 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Tjaereborg Timesharing, S.A. | 500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Empresa Mixta de Aguas de Antigua, S.L. | 4800 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Grupo Turístico Barceló, S.L. | 240 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Aguas Cristóbal Franquis, S.L. | 1200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Anjoca Canarias, S.A. | 3000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Ramiterra, S.L. | 3000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Inver Canary Dos, S.L. | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Suministros de Agua de La Oliva, S.A. | 9000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Consorcio Abastecimiento de Aguas a Fuerteventura | 4000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Parque de Ocio y Cultura BAKU 1 | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Parque de Ocio y Cultura BAKU 2 | 90 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
RIU Palace Tres Islas | 100 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
RIU Oliva Beach | 400 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Nombredo, S.L. | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Consorcio Abastecimiento de Aguas a Fuerteventura | 4400 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Puertito de la Cruz | 60 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Vinamar, S.A. | 3600 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Fuercan, S.L. Cañada del Rio I | 2000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Fuercan, S.L. Cañada del Rio II | 1000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Fuercan, S.L. Cañada del Rio III | 2000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Club Aldiana | 200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Erwin Sick | 30 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Esquinzo Urbanización II | 1200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Esquinzo Urbanización III | 1200 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Sol Élite Los Gorriones 1 | 400 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel Sol Élite Los Gorriones 2 | 400 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Stella Canaris I | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Stella Canaris II | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Stella Canaris III | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel H 10 Playa Esmeralda. | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel “Club Paraíso Playa” | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Urbanización Costa Calma. | 110 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Urbanización Tierra Dorada. | 120 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Zoo-Parque La Lajita. | 1300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Apartamentos Esmeralda Maris | 120 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hotel H10 Tindaya | 280 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Aparthotels Morasol | 80 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Consorcio Abastecimiento de Aguas a Fuerteventura | 36,500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Aeropuerto | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
GranTarajal | 4000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Sotavento, S.A. | 2925 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Arucas-Moya I | 10,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Granja experimental | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Granja experimental | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Comunidad Fuentes de Quintanilla | 800 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Granja experimental | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Gáldar-Agaete I | 3000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Gáldar II | 7000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Agragua | 15,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Guía I | 5000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Guía II | 5000 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
Félix Santiago Melián | 5000 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
Las Palmas III | 65,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Las Palmas IV | 15,000 | 2.61 | 0.030162867 | 0.001566 | 0.000783 |
BAXTER S.A. | 100 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
El Corte Inglés, S.A. | 300 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Anfi del Mar I | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Anfi del Mar II | 250 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
AQUALING | 2000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Puerto Rico I | 4000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Puerto Rico II | 4000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Taurito | 400 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Costa Meloneras | 300 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Villa del Conde | 500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Bahia Feliz | 600 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Bonny | 8000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Maspalomas I Mar | 14,500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Maspalomas II | 25,200 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
UNELCO II | 600 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Ayto. San Nicolas | 5000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Asociación de agricultores de la Aldea | 5400 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Sureste III | 8000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Aeropuerto I | 1000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Salinetas | 16,000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Aeropuerto II | 500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Hoya León | 1500 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Bco. García Ruiz | 1000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Mando Aéreo de Canarias | 1000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
UNELCO I | 1000 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
Anfi del Mar | 1500 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Norcrost, S.A. | 170 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Adeje Arona | 30,000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Gran Hotel Anthelia Park | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
La Caleta (Ayto. Adeje) | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Hotel Sheraton La Caleta | 2.16 | 0.035132228 | 0.001824 | 0.000912 | |
Hotel Gran Tacande | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Hotel Rocas de Nivaria, Playa Paraíso | 3.04 | 3.04 | 0.00141012 | 0.001824 | |
Hotel Bahía del Duque, Costa Adeje | 3.04 | 3.04 | 0.00141012 | 0.001824 | |
Siam Park | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Tenerife-Sol S. A. | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Hotel Conquistador, P. de Las Américas | 3.04 | 3.04 | 0.00141012 | 0.001824 | |
Arona Gran Hotel, Los Cristianos | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Bonny S.A., Finca El Fraile. | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
El Toscal, La Estrella (C. Regantes Las Galletas) | 3.04 | 3.04 | 0.00141012 | 0.001824 | |
Complejo Mare Nostrum, P. Las Américas | 3.04 | 3.04 | 0.00141012 | 0.001824 | |
Hotel Villa Cortés | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Buenavista Golf S.A, | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Rural Teno | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Ropa Rent, S.A. (P.I. Güímar) | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Unelco | 600 | 3.04 | 0.040448289 | 0.0021 | 0.00105 |
I.T.E.R. Cabildo de Tenerife | 14 | 3.5 | 0.040448289 | 0.0021 | 0.00105 |
C.T. en P.I. de Granadilla | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Bonny S.A., Finca El Confital. | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Polígono Industrial de Granadilla (portatil) | 3.5 | 3.5 | 0.001623494 | 0.0021 | |
Guia de ISORA Hoya de la leña | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Club Campo Guía de Isora, Abama | 3.5 | 3.04 | 0.001623494 | 0.0021 | |
Hotel Meliá Palacio de Isora, Alcalá | 3.5 | 3.5 | 0.001623494 | 0.0021 | |
Loro Parque | 3.5 | 0.040448289 | 0.0021 | 0.00105 | |
Santa Cruz I | 20,000 | 3.5 | 0.035132228 | 0.001824 | 0.000912 |
Recinto Portuario Santa Cruz (portátil) | 3,04 | 3.5 | 0.00141012 | 0.001824 | |
CEPSA | 1000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Hotel Playa la Arena | 3.04 | 0.035132228 | 0.001824 | 0.000912 | |
Hotel Jardín Tecina | 2000 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
La Restinga | 500 | 3.04 | 0.040448289 | 0.0021 | 0.00105 |
La Restinga | 1200 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
El Cangrejo | 1200 | 3.5 | 0.035132228 | 0.001824 | 0.000912 |
El Cangrejo | 1200 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
El Golfo | 1350 | 3.04 | 0.035132228 | 0.001824 | 0.000912 |
Carbon footprint according to the technological structure of the generation parks that uses oil products in the Canary Islands, broken down by islands (2017) [
CO2 Footprint per Non-Renewable Technology in Canaries (tCO2) | |||||||
---|---|---|---|---|---|---|---|
Technology | Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Palma | La Gomera | El Hierro |
Vapor Turbine | 274,429 | 279,289 | 550,154 | 34,9597 | 268,273 | 68,688.22 | 48,276 |
Diesel Motor | 110,730 | 193,188 | 39,888 | 50,483 | 14,360 | - | - |
Gas Turbine | 1,270,058 | 1,110,153 | - | - | - | - | - |
Combined Cycle | 1,175,213 | 1,162,741 | - | - | - | - | - |
Carbon footprint by installed power according to the technological structure of the generation park that uses oil products in the Canary Islands, broken down by islands (2017) [
CO2 Carbon Footprint per Power Installed of Non-Renewable Technology in Canaries (tCO2/MW) | |
---|---|
Technology | tCO2/MW |
Vapor Turbine | 3240 |
Diesel Motor | 638 |
Gas Turbine | 4175 |
Combined Cycle | 2545 |
CO2 footprint of each non-renewable technology per MWh in the Canary Islands (tCO2/MWh) (2017) [
CO2 Footprint of Each Non-Renewable Technology per MWh in Canarias (tCO2/MWh) | |||||||
---|---|---|---|---|---|---|---|
Technology | Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Palma | La Gomera | El Hierro |
Diesel Motor | 0.224621 | 0.204929 | 0.151737 | 0.12329 | 0.215532 | 0.168356 | 0.364811 |
Gas Turbine | 0.178854 | 0.170368 | 0.278681 | 0.045057 | 2.494326 | 0 | 0 |
Vapor Turbine | 0.145261 | 0.134765 | 0 | 0 | 0 | 0 | 0 |
Combined Cycle | 0.175115 | 0.162457 | 0 | 0 | 0 | 0 | 0 |
Percentages of water consumption by islands and sectors (%) (2017) [
Water Consumes in Canarias per Sectors (%) | |||||||
---|---|---|---|---|---|---|---|
Consume | Lanzarote | Fuerteventura | Gran Canaria | Tenerife | La Gomera | El Hierro | La Palma |
Urban | 26% | 29% | 32% | 27% | 9% | 23% | 8% |
Touristic | 40% | 48% | 11% | 10% | 9% | 3% | 2% |
Industrial | 3% | 4% | 4% | 5% | 0% | 1% | 0% |
Irrigation | 23% | 11% | 43% | 49% | 69% | 63% | 77% |
Losses | 7% | 9% | 9% | 9% | 13% | 9% | 13% |
Total | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
References
1. Kurihara, M. Seawater Reverse Osmosis Desalination. Membranes; 2021; 11, 243. [DOI: https://dx.doi.org/10.3390/membranes11040243]
2. Ruiz, A.; Melian-Martel, N.; Nuez, I. Short Review on Predicting Fouling in RO Desalination. Membranes; 2017; 7, 62. [DOI: https://dx.doi.org/10.3390/membranes7040062]
3. Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water; 2021; 13, 293. [DOI: https://dx.doi.org/10.3390/w13030293]
4. Sadhwani, J.J.; Veza, J.M. Desalination and energy consumption in Canary Islands. Desalination; 2008; 221, pp. 143-150. [DOI: https://dx.doi.org/10.1016/j.desal.2007.02.051]
5. Schallenberg-Rodriguez, J.; Veza, J.M.; Blanco-Marigorta, A. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev.; 2014; 40, pp. 741-748. [DOI: https://dx.doi.org/10.1016/j.rser.2014.07.213]
6. Cohen, Y.; Semiat, R.; Rahardianto, A. A perspective on reverse osmosis water desalination: Quest for sustainability. AIchE J.; 2017; 63, pp. 1771-1784. [DOI: https://dx.doi.org/10.1002/aic.15726]
7. Frank, W.; de Fluidos, M. Hemos Tenido en Cuenta el Coste a Partir un Valor Medio de la Tarifa Industrial Actual 3.1A de OHMIA; 6th ed. McGraw-Hill: NewYork, NY, USA, 2008; ISBN 978-84-481-6603-8 Available online: https://ohmia.es/industria/ (accessed on 20 July 2021).
8. Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination; 2015; 364, pp. 2-16. [DOI: https://dx.doi.org/10.1016/j.desal.2015.01.041]
9. León, F.A.; Ramos, A. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desalination Water Treat.; 2017; 73, pp. 208-214. [DOI: https://dx.doi.org/10.5004/dwt.2017.20573]
10. Jiménez, C. Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo. Costa Rica. Rev. Biol. Trop.; 2001; 49, (Suppl. 2), pp. 153-161.
11. Du, Y.; Liang, X.; Liu, Y.; Xie, L.; Zhang, S. Economic, Energy, Exergo-Economic, and Environmental Analyses and Multiobjective Optimization of Seawater Reverse Osmosis Desalination Systems with Boron Removal. Ind. Eng. Chem. Res.; 2019; 58, pp. 14193-14208. Available online: http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.9b01933 (accessed on 10 July 2021). [DOI: https://dx.doi.org/10.1021/acs.iecr.9b01933]
12. Penela, A.C. Utilidad de la Huella Ecológica y del Carbono en el ámbito de la Responsablidad Social Corporativa (RSC) y el Ecoetiquetado de Bienes y Servicios. 2009; Available online: http://www.eumed.net/rev/delos/08 (accessed on 10 June 2021).
13. Consejería de Medio Ambiente de la Junta de Andalucía. La Huella Ecológica de Andalucía, una Herramienta Para Medir la Sostenibilidad; Junta de Anadalucía: Seville, Spain, 2006.
14. Ministerio de Medio Ambiente Medio Rural y Marino. Análisis de la Huella Ecológica de España; Ministerio de medio ambiente medio rural y marino: Madrid, Spain, 2008.
15. Javier, L.P. Propuesta Metodológica Para la Determinación de la Huella Ecológica en el Sector Hotelero. Ph.D. Thesis; Universidad de Las Palmas de Gran Canaria: Las palmas de Gran Canaria, Spain, 2015.
16. Dirección General de Industria y Energía. Anuario Energético de Canarias 2017; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2017.
17. Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of founling in full-scale reverse osmosis nanofiltration installations in the Netherlands. Desalination; 2021; 500, 114865. [DOI: https://dx.doi.org/10.1016/j.desal.2020.114865]
18. Latorre, F.J.G.; Báez, S.O.P.; Gotor, A.G. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination; 2015; 366, pp. 146-153. [DOI: https://dx.doi.org/10.1016/j.desal.2015.02.039]
19. Koutsou, C.P.; Kritikos, E.; Karabelas, A.J.; Kostoglou, M. Analysis of Temperature effects on the specific energy consumption in reverse osmosis desalination processes. Desalination; 2020; 476, 114123. [DOI: https://dx.doi.org/10.1016/j.desal.2019.114213]
20. Avlonitis, S.A.; Kouroumbas, K.; Vlachakis, N. Energy consumption and membrane replacement cost for. Desalination; 2003; 157, pp. 151-158. [DOI: https://dx.doi.org/10.1016/S0011-9164(03)00395-3]
21. Elmaadawy, K.; Kotb, M.; Elkadeem, M.R.; Sharshif, S.W.; Dan, A.; Moawad, A.; Liu, B. Optimal sizing and techno-enviroeconomic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag.; 2020; 224, 113377. [DOI: https://dx.doi.org/10.1016/j.enconman.2020.113377]
22. Busch, M.; Meckols, W.E. Reducing energy consumption in seawater desalination. Desalination; 2020; 165, pp. 299-312. [DOI: https://dx.doi.org/10.1016/j.desal.2004.06.035]
23. Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination; 2018; 431, pp. 2-14. [DOI: https://dx.doi.org/10.1016/j.desal.2017.10.033]
24. Rana, M.W.; Chen, B.; Hayat, T.; Alsaedi, A. Energy consumption for water use cycles in different countries: A review. Appl. Energy; 2016; 178, pp. 868-885.
25. Altmann, T.; Das, R. Process improvement of sea water reverse osmosis (SWRO) and subsequent decarbonization. Desalination; 2021; 499, 114791. [DOI: https://dx.doi.org/10.1016/j.desal.2020.114791]
26. Wittholz, M.K.; Neil, B.O.; Colby, C.B.; Lewis, D.M. Estimating the cost of desalination plants using a cost database. Desalination; 2008; 229, pp. 10-20. [DOI: https://dx.doi.org/10.1016/j.desal.2007.07.023]
27. Heihsel, M.; Lenzen, M.; Malik, A.; Geschke, A. The carbon footprint of desalination. An input-output analysis of seawater reverse osmosis desalination in Australia 2005–2015. Desalination; 2019; 454, pp. 71-81. [DOI: https://dx.doi.org/10.1016/j.desal.2018.12.008]
28. Giwa, A.; Akther, N.; Dufour, V.M.; Hasan, S.W. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Adv.; 2015; 6, pp. 8134-8163. [DOI: https://dx.doi.org/10.1039/C5RA17221G]
29. Kim, J.; Park, K.; Yang, D.R.; Hong, S. Talnsive review of energy consumption of sea water reverse osmosis desalination plants. Appl. Energy; 2019; 254, 113652. [DOI: https://dx.doi.org/10.1016/j.apenergy.2019.113652]
30. Alanezi, A.A.; Altaee, A.; Sharif, A.O. The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process. Chem. Eng. Res. Des.; 2020; 158, pp. 12-23. [DOI: https://dx.doi.org/10.1016/j.cherd.2020.03.018]
31. Gualous, H.; Bouquain, D.; Berthon, A.; Kauffmann, J.M. Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources; 2003; 123, pp. 86-93. [DOI: https://dx.doi.org/10.1016/S0378-7753(03)00527-5]
32. Brouji, H.E.; Vinassa, J.-M.; Briat, O.; Bertrand, N.; Woirgard, E. Ultracapacitors self discharge modelling using a physical description of porous electrode impedance. Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference; Harbin, China, 3–5 September 2018.
33. Tal, A. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water; 2018; 10, 197. [DOI: https://dx.doi.org/10.3390/w10020197]
34. Ruiz-Garcia, A.; De la Nuez, I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spriral-Wound Membrane Modules. Water; 2019; 11, 152. [DOI: https://dx.doi.org/10.3390/w11010152]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer