Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid development of technology has resulted in numerous sensors and devices for performing measurements in an environment. Depending on the scale and application, the coverage and size of a wireless sensor network (WSN) is decided. During the implementation, the energy consumption and life of the nodes in the WSN are affected by the continuous usage. Hence, in this study, we aimed to improve the lifespan of the WSN and reduce energy consumption by the nodes during the data transfer using a hybrid approach. The hybrid approach combines Grey Wolf Optimization (GWO) and Dragonfly Optimization (DFO) for exploring a global solution and optimizing the local solution to find the optimum route for the data transfer between the target node and the control center. The results show that the proposed approach has effective energy consumption corresponding to the load applied. Our proposed system scored high in the average residual energy by the number of rounds compared to other methods such as k-means, LEACH-C, CHIRON, and Optimal-CBR. The first dead node was found after 500 rounds, showing that the proposed model has nodes with better reliability. It also showed a comparative analysis of the transmission rate of a packet concerning mobility speed among various methods. The proposed method has the highest ratio at all mobility speeds, i.e., 99.3, 99.1, 99, 98.8, and 98.6, and our proposed system has the lowest computational time of all the evaluated methods, 6 s.

Details

Title
Optimized Routing by Combining Grey Wolf and Dragonfly Optimization for Energy Efficiency in Wireless Sensor Networks
Author
Younus, Hiba Apdalani 1 ; Koçak, Cemal 2   VIAFID ORCID Logo 

 Faculty of Technology, Institute of Science and Computer Engineering, Gazi University, Ankara 06560, Turkey 
 Faculty of Technology Computer Engineering, Gazi University, Ankara 06560, Turkey 
First page
10948
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771655444
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.