Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of thermal insulated decorative panel materials with low thermal conductivity and high flame retardance is a key step toward energy-saving buildings. However, traditional thermal insulation materials are always highly conductive and inflammable, which restricts their application for new buildings. This study aims to prepare the non-combustible, cement-based EPS mixtures with thermal conductivity lower than 0.045 and density less than 140 kg/m3 and characterize it with mechanical, thermal, and flame retardant properties. The effect of particle size, Silica coated and content of EPS on the physical, mechanical, thermal, and combustion performance are conducted in this paper. The comprehensive indoor tests including density, water absorbing, softening coefficient, compressive strength, tensile strength, moisture susceptibility, thermal conductivity, and scanning electron microscopy (SEM) along with combustion performance are reported to evaluate the effects of several variables on the investigated cement-based nonflammable EPS (CEPS)mixtures. The results show that small and gradation EPS particles significantly improve the comprehensive performance of mixtures. In addition, Silica coated ESP significantly improve the flame retardance of mixtures while reduce the mechanical characteristics slightly. These results contribute to the selection of appropriate materials to enhance the thermal insulation, flame retardance and mechanical properties of CEPS.

Details

Title
Optimizing the Composition Design of Cement-Based Expanded-Polystyrene (EPS) Exterior Wall Based on Thermal Insulation and Flame Retardance
Author
Shi, Jicun 1 ; Zhao, Lei 1 ; Zhang, Yao 2 ; Han, Hongxing 1   VIAFID ORCID Logo  ; Zhou, Lihuang 2 ; Wang, Chenxi 1 

 School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, China 
 Henan Xinsheng Building Energy Saving Decoration Co., Ltd., Xinxiang 453002, China 
First page
5229
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748554889
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.