Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Novel methyl anthranilate-based organoselenocyanate hybrids were developed, and their structures were confirmed by the state-of-the-art spectroscopic techniques. Their antimicrobial potency was estimated against various microbial strains (e.g., Candida albicans, Escherichia coli, and Staphylococcus aureus). The S. aureus and C. albicans strains were more sensitive than E. coli toward the organoselenocyanates. Interestingly, the azoic derivatives 4 and 9, methyl ester 6, and phenoxy acetamide 15 showed promising antimicrobial activity. Moreover, the antitumor potential was estimated against liver and breast carcinomas, as well as primary fibroblasts. Interestingly, the anticancer properties were more pronounced in the HepG2 cells. The organoselenocyanates 4, 6, 9, 10, and 15 showed interesting anti-HepG2 cytotoxic patterns. Additionally, organoselenocyanates 3, 4, and 10 exhibited promising antioxidant activities in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and 2,2-diphenyl-1-picrylhydrazyl in vitro assays compared to ascorbic acid. These data point to promising antimicrobial, anticancer, and antioxidant activities of organoselenocyanates 6, 9, and 15 warrant further studies.

Details

Title
Organoselenocyanates Tethered Methyl Anthranilate Hybrids with Promising Anticancer, Antimicrobial, and Antioxidant Activities
Author
Al-Abdallah, Batool 1 ; Al-Faiyz, Yasair S 1   VIAFID ORCID Logo  ; Shaaban, Saad 2 

 Chemistry Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia 
 Chemistry Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 
First page
246
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756719720
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.