Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It has been demonstrated that the phosphorylation pathway of L-serine (Ser) biosynthesis (PPSB) is very important in plant growth and development, but whether and how PPSB affects nitrogen metabolism and starch accumulation has not been fully elucidated. In this study, we took the energy plant duckweed (strain Lemna turionifera 5511) as the research object and used a stable genetic transformation system to heterologously over-expressing Arabidopsis AtPSAT1 (the gene encoding phosphoserine aminotransferase, the second enzyme of PPSB). Our results showed that, under nitrogen starvation, the transgenic plants grew faster, with higher values of Fv/Fm, rETR, and Y(II), as well as fresh and dry weight, than the wild-type. More promisingly, the accumulation of starch was also found to be significantly improved when over-expressing AtPSAT1 in the transgenic plants. qRT-PCR analysis results showed that the expression of genes related to nitrogen assimilation, carbon metabolism, and starch biosynthesis was up-regulated, while the expression of starch degradation-related genes was down-regulated by AtPSAT1 over-expression. We propose that the increased starch accumulation caused by AtPSAT1 over-expression may result from both elevated photosynthetic capacity and nitrogen utilization efficiency. This research sheds new light on the mechanism underlying the ability of PPSB to coordinate nitrogen and carbon metabolism, and provides a feasible way to improve starch production, that is, through engineering PPSB in crops.

Details

Title
Over-Expression of Phosphoserine Aminotransferase-Encoding Gene (AtPSAT1) Prompts Starch Accumulation in L. turionifera under Nitrogen Starvation
Author
Wang, Lei 1   VIAFID ORCID Logo  ; Li, Shuiling 1 ; Sun, Ling 1 ; Tong, Yana 2 ; Yang, Lin 3 ; Zhu, Yerong 1 ; Wang, Yong 1 

 College of Life Science, Nankai University, Tianjin 300071, China 
 Tianjin Academy of Agricultural Sciences, Tianjin 300192, China 
 Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China 
First page
11563
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724285051
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.