It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cardiac signals are often corrupted by artefacts like power line interference (PLI) which may mislead the cardiologists to correctly diagnose the critical cardiac diseases. The cardiac signals like high resolution electrocardiogram (HRECG), ultra-high frequency ECG (UHF-ECG) and intracardiac electrograms are the specialized techniques in which higher frequency component of interest up to 1 KHz are observed. Therefore, a state space recursive least square (SSRLS) adaptive algorithm is applied for the removal of PLI and its harmonics. The SSRLS algorithm is an effective approach which extracts the desired cardiac signals from the observed signal without any need of reference signal. However, SSRLS is inherited computational heavy algorithm; therefore, filtration of increased number of PLI harmonics bestow an adverse impact on the execution time of the algorithm. In this paper, a parallel distributed SSRLS (PD-SSRLS) algorithm is introduced which runs the computationally expensive SSRLS adaptive algorithm parallely. The proposed architecture efficiently removes the PLI along with its harmonics even the time alignment among the contributing nodes is not the same. Furthermore, the proposed PD-SSRLS scheme provides less computational cost as compared to sequentially operated SSRLS algorithm. A comparison has been drawn between the proposed PD-SSRLS algorithm and sequentially operated SSRLS algorithm in term of qualitative and quantitative performances. The simulation results show that the proposed PD-SSRLS architecture provides almost same qualitative and quantitative performances than that of sequentially operated SSRLS algorithm with less computational cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer