Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Line-start synchronous motors have attracted researchers’ interest as suitable replacements of asynchronous motors due to their high efficiency, which has been provoked by strict regulations regarding applicable efficiency classes of motors in the EU market. The research becomes even more challenging as it takes into consideration the diverse rotor topologies with different magnet locations for this type of motor. The rotor configuration with an interior asymmetric permanent magnet (PM) array rotor was chosen for analysis and optimization in this paper as this specific configuration is particularly challenging in terms of placing the magnets with adequate dimensions into the existing rotor of the asynchronous motor with a squirrel cage winding, in order simultaneously to obtain good operational characteristics such as high efficiency and power factor, good overloading capability and low material consumption. Therefore, an optometric analysis is performed in order to find the best configuration of the air gap length, magnet thickness, magnet width and number of conductors per slot, along with modifications of the rotor slot. The motor outer dimensions remained unchanged compared with the starting model of the line-start motor derived from the asynchronous motor, which is a product of the company Končar. The optimized model obtained higher efficiency, power factor and overloading capability than the starting model, along with good starting and synchronization capabilities.

Details

Title
Parametric Analysis for Performance Optimization of Line-Start Synchronous Motor with Interior Asymmetric Permanent Magnet Array Rotor Topology
Author
Sarac, Vasilija 1   VIAFID ORCID Logo  ; Minovski, Dragan 1 ; Janiga, Peter 2   VIAFID ORCID Logo 

 Faculty of Electrical Engineering, University Goce Delcev, 2000 Stip, North Macedonia; [email protected] 
 Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, 81219 Bratislava, Slovakia; [email protected] 
First page
531
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632721779
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.