Full Text

Turn on search term navigation

Copyright © 2017 Wenkai Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The major objective of this work is to present a train rescheduling model with train capacity constraint from a passenger-oriented standpoint for a subway line. The model expects to minimize the average generalized delay time (AGDT) of passengers. The generalized delay time is taken into consideration with two aspects: the delay time of alighting passengers and the penalty time of stranded passengers. Based on the abundant automatic fare collection (AFC) system records, the passenger arrival rate and the passenger alighting ratio are introduced to depict the short-term characteristics of passenger flow at each station, which can greatly reduce the computation complexity. In addition, an efficient genetic algorithm with adaptive mutation rate and elite strategy is used to solve the large-scale problem. Finally, Beijing Subway Line 13 is taken as a case study to validate the method. The results show that the proposed model does help neutralize the effect of train delay, with a 9.47% drop in the AGDT in comparison with the train-oriented model.

Details

Title
A Passenger-Oriented Model for Train Rescheduling on an Urban Rail Transit Line considering Train Capacity Constraint
Author
Xu, Wenkai; Zhao, Peng; Liqiao Ning
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1889044376
Copyright
Copyright © 2017 Wenkai Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.