Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the problems of low network accuracy, slow speed, and a large number of model parameters in printed circuit board (PCB) defect detection, an improved detection algorithm of PCB surface defects based on YOLOv5 is proposed, named PCB-YOLO, in this paper. Based on the K-means++ algorithm, more suitable anchors for the dataset are obtained, and a small target detection layer is added to make the PCB-YOLO pay attention to more small target information. Swin transformer is embedded into the backbone network, and a united attention mechanism is constructed to reduce the interference between the background and defects in the image, and the analysis ability of the network is improved. Model volume compression is achieved by introducing depth-wise separable convolution. The EIoU loss function is used to optimize the regression process of the prediction frame and detection frame, which enhances the localization ability of small targets. The experimental results show that PCB-YOLO achieves a satisfactory balance between performance and consumption, reaching 95.97% mAP at 92.5 FPS, which is more accurate and faster than many other algorithms for real-time and high-precision detection of product surface defects.

Details

Title
PCB-YOLO: An Improved Detection Algorithm of PCB Surface Defects Based on YOLOv5
Author
Tang, Junlong 1 ; Liu, Shenbo 1 ; Zhao, Dongxue 1 ; Tang, Lijun 1 ; Zou, Wanghui 1 ; Zheng, Bin 2 

 School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China 
 School of Computer and Communications Engineering, Changsha University of Science and Technology, Changsha 410114, China 
First page
5963
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799813979
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.