It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is a common thought that in windy conditions the voice of a shouter emanates towards the upwind with lower strength than towards the downwind. Contradicting with this, acoustics literature states that a source emanates with a higher amplitude against the upwind direction in comparison with the downwind direction, which is known as the convective amplification or attenuation effect. This article shows that the discrepancy arises because shouters receive their own voice at their ear canals worse when facing against the upwind direction than in the corresponding down-wind case. When shouting upwind, the ears are situated downwind from the mouth, and the strength of one’s own voice decreases in the ears due to the convective attenuation effect depending on frequency, making the shouter believe that it is more difficult to shout against the wind. This is shown by computational simulations and real measurements using models of a human shouter with simplified geometries.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Aalto University, Acoustics Lab, Department of Information and Communications Engineering, Espoo, Finland (GRID:grid.5373.2) (ISNI:0000000108389418)
2 University of Eastern Finland, Department of Technical Physics, Kuopio, Finland (GRID:grid.9668.1) (ISNI:0000 0001 0726 2490)




