Full Text

Turn on search term navigation

Copyright © 2021 Qinglin Cao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Image thresholding is a widely used technology for a lot of computer vision applications, and among various global thresholding algorithms, Otsu-based approaches are very popular due to their simplicity and effectiveness. While the usage of Otsu-based thresholding methods is well discussed, the performance analyses of these methods are rather limited. In this paper, we first review nine Otsu-based approaches and categorize them based on their objective functions, preprocessing, and postprocessing strategies. Second, we conduct several experiments to analyze the model characteristics using different scene parameters both on synthetic images and real-world cell images. We put more attention to examine the variance of foreground object and the effect of the distance between mean values of foreground and background. Third, we explore the robustness of algorithms by introducing two typical kinds of noises under different intensities and compare the running time of each method. Experimental results show that NVE, WOV, and Xing’s methods are more robust to the distance of mean values of foreground and background. The large foreground variance will cause a larger threshold value. Experiments on cell images show that foreground miss detection becomes serious when the intensities of foreground pixels change drastically. We conclude that almost all algorithms are significantly affected by Salt&Pepper and Gaussian noises. Interestingly, we find that ME increases almost linearly with the intensity of Salt&Pepper noise. In terms of algorithms’ time cost, methods with no preprocessing and postprocessing steps have more advantages. All these findings can serve as a guideline for image thresholding when using Otsu-based thresholding approaches.

Details

Title
Performance Analysis of Otsu-Based Thresholding Algorithms: A Comparative Study
Author
Cao, Qinglin 1 ; Qingge, Letu 2 ; Yang, Pei 3   VIAFID ORCID Logo 

 Xining Urban Vocational & Technical College, Xining 810012, China 
 Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411, USA 
 Department of Computer Technology and Application, Qinghai University, Xining 810016, China 
Editor
Haibin Lv
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2589610618
Copyright
Copyright © 2021 Qinglin Cao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/