It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A hybrid configuration of Raman amplifier and erbium-doped fiber amplifier (EDFA) is proposed to obtain a better performance in term of gain, noise figure and flat gain. It is based on the optimum parameter configuration of a singly-based Raman amplifier and EDFA. The best parameter for both amplification has been analyze in terms of its input signal power, pump power and their fiber length whereas the best erbium ion density has also been analyze in EDFA setup. All the parameters are varied to some values to get the optimum result. The simulation is done by using Optisystem 14.0 software. The hybrid amplifier consists of Raman amplifier with multi-pump power set up and bidirectional pump power of EDFA with the pump wavelength of 980 nm is designed and simulated in order to obtain higher gain and lower noise figure. From the simulation of the hybrid configuration, the optimum output has been achieved. The hybrid configurations exhibit the average gain of 46 dB and average noise figure of 3 dB. The flat gain obtained is between 1530 nm to 1600 nm which include C-Band and L-Band frequency with the gain bandwidth of 70 nm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical and Computer Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia.