Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The films teenagers watch have a significant influence on their behavior. After witnessing a film starring an actor with a particular social habit or personality trait, viewers, particularly youngsters, may attempt to adopt the actor’s behavior. This study proposes an algorithm-based technique for predicting the market potential of upcoming science fiction films. Numerous science fiction films are released annually, and working in the film industry is both profitable and delightful. Before the film’s release, it is necessary to conduct research and make informed predictions about its success. In this investigation, different machine learning methods written in MATLAB are examined to identify and forecast the future performance of movies. Using 14 methods for machine learning, it was feasible to predict how individuals would vote on science fiction films. Due to their superior performance, the fine, medium, and weighted KNN algorithms were given more consideration. In comparison to earlier studies, the KNN-adopted methods displayed greater precision (0.89–0.93), recall (0.88–0.92), and accuracy (90.1–93.0%), as well as a rapid execution rate, more robust estimations, and a shorter execution time. These tabulated statistics illustrate that the weighted KNN method is effective and trustworthy. If several KNN algorithms targeting specific viewer behavior are logically coupled, the film business and its global expansion can benefit from precise and consistent forecast outcomes. This study illustrates how prospective data analytics could improve the film industry. It is possible to develop a model that predicts a film’s success, effect, and social behavior by assessing features that contribute to its success based on historical data.

Details

Title
Performance Predictions of Sci-Fi Films via Machine Learning
Author
Amjed Al Fahoum 1   VIAFID ORCID Logo  ; Ghobon, Tahani A 2 

 Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan 
 School of Engineering Technology, Al Hussein Technical University, Irbid 21163, Jordan 
First page
4312
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799592612
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.