Full Text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study evaluates the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the observed climate variability in the historical simulation of the Coupled Model Intercomparison Phase 6 (CMIP6). TaiESM1 is developed on the basis of the Community Earth System Model version 1.2.2, with the inclusion of several new physical schemes and improvements in the atmosphere model. The new additions include an improved triggering function in the cumulus convection scheme, a revised distribution‐based formula in the cloud fraction scheme, a new aerosol scheme, and a unique scheme for three‐dimensional surface absorption of shortwave radiation that accounts for the influence of complex terrains. In contrast to the majority of model evaluation processes, which focus mainly on the climatological mean, this evaluation focuses on climate variability parameters, including the diurnal rainfall cycle, precipitation extremes, synoptic eddy activity, intraseasonal fluctuation, monsoon evolution, and interannual and multidecadal atmospheric and oceanic teleconnection patterns. A series of intercomparisons between the simulations of TaiESM1 and CMIP6 models and observations indicate that TaiESM1, a participating model in CMIP6, can realistically simulate the observed climate variability at various time scales and are among the leading CMIP6 models in terms of many key climate features.

Details

Title
Performance of the Taiwan Earth System Model in Simulating Climate Variability Compared With Observations and CMIP6 Model Simulations
Author
Yi‐Chi Wang 1   VIAFID ORCID Logo  ; Huang‐Hsiung Hsu 1   VIAFID ORCID Logo  ; Chao‐An Chen 1   VIAFID ORCID Logo  ; Wan‐Ling Tseng 1   VIAFID ORCID Logo  ; Pei‐Chun Hsu 1 ; Cheng‐Wei Lin 1 ; Yu‐Luen Chen 1 ; Li‐Chiang Jiang 1 ; Yu‐Chi Lee 1 ; Hsin‐Chien Liang 1   VIAFID ORCID Logo  ; Wen‐Ming Chang 1 ; Wei‐Liang Lee 1   VIAFID ORCID Logo  ; Chein‐Jung Shiu 1   VIAFID ORCID Logo 

 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 
Section
Research Article
Publication year
2021
Publication date
Jul 2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
19422466
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2555309077
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.