Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the CuFe2O4 on rGO/halloysite material was made in an uncomplicated manner. The catalyst has a sandwich-like shape with a uniform coating of the active phase on the rGO sheets and halloysite tubes. The catalyst’s large specific surface area (130 m2/g) and small band gap energy (1.9 eV) allow it to adsorb photons and photocatalyze organic contaminants effectively. In approximately 1 h of light, the catalyst showed high performance in achieving almost complete conversion in photodegrading CIP for an initial CIP concentration of 20 ppm. A pseudo-first-order rate law was followed by the process, as revealed by the experimental results. In addition, the pH effect and the contribution of intermediate reactive radicals that emerged during the photochemical process were explored. The results indicated that hydroxyl radicals and holes had a major impact on CIP decomposition, suggesting that the addition of these radicals could enhance CIP degradation efficiency at a larger scale. This study also confirmed the superiority of catalysis and photochemical processes in environmental treatments by the neutral pH values.

Details

Title
Photocatalytic Removal of Ciprofloxacin in Water by Novel Sandwich-like CuFe2O4 on rGO/Halloysite Material: Insights into Kinetics and Intermediate Reactive Radicals
Author
Ha-Son Ngo 1   VIAFID ORCID Logo  ; Thi-Linh Nguyen 1 ; Ngoc-Tuan Tran 1 ; Hanh-Chi Le 2 

 Department of Oil Refining and Petrochemistry, Hanoi University of Mining and Geology, 18 Vien Street, Bac Tu Liem District, Hanoi 11910, Vietnam; [email protected] (T.-L.N.); [email protected] (N.-T.T.) 
 Institute of Ecology and Works Protection, Vietnam Academy for Water Resources, 267 Chua Boc Street, Dong Da District, Hanoi 11515, Vietnam; [email protected] 
First page
1569
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806609552
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.