Full text

Turn on search term navigation

Copyright © 2022 Qiqi Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

As the electron transport layer of dye-sensitized solar cells (DSSCs), the photoanode is an important component that affects photoelectric conversion efficiency (PCE). The commonly used material titanium dioxide (TiO2) is difficult to prepare as nanostructures with large specific surface area, which affects dye loading and electrolyte diffusion. Herein, TiO2 nanofibers and ZnO-TiO2 composite nanofibers with different molar ratios are synthesized by electrospinning technology. The above nanofibers are coated on photoanodes by the doctor blade method to assemble DSSCs. The influence of the composite ratio of ZnO-TiO2 composite nanofibers on the photoelectric performance of the assembled DSSCs is explored. The ZnO-TiO2 composite nanofibers with a molar ratio of 1 : 2 have large specific surface area and porosity and have the smallest charge transfer resistance at the photoanode-electrolyte interface. The PCE of the nanofiber-modified DSSCs reaches a maximum of 3.66%, which is 56% higher than that of the TiO2 nanofiber-modified DSSCs. The photovoltaic parameters such as open circuit voltage (VOC), current density (JSC), and fill factor (FF) are 0.58 V, 10.36 mA/cm2, and 0.61, respectively. Proper compounding of zinc oxide (ZnO) can not only make the nanofibers absorb more dyes and enhance the light-harvesting ability but also improve the diffusion of the electrolyte and enhance the electron transport, thus successfully improving the power conversion efficiency of DSSCs.

Details

Title
Photoelectric Performance Optimization of Dye-Sensitized Solar Cells Based on ZnO-TiO2 Composite Nanofibers
Author
Chang, Qiqi 1   VIAFID ORCID Logo  ; Xu, Jun 1   VIAFID ORCID Logo  ; Han, Yijun 1   VIAFID ORCID Logo  ; Ehrmann, Andrea 2   VIAFID ORCID Logo  ; He, Tianhong 1   VIAFID ORCID Logo  ; Zheng, Ruiping 1 

 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China 
 Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany 
Editor
P Davide Cozzoli
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2660748636
Copyright
Copyright © 2022 Qiqi Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/