It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Clonal expansion and development of immunological memory are two hallmarks of adaptive immune responses. Resolving the intricate pathways that regulate cell cycle activity and lead to the generation of diverse effector and memory T cell subsets is essential for improving our understanding of protective T cell immunity. A deeper knowledge of cell cycle regulation in T cells also has translational implications for adoptive cell therapies and vaccinations against infectious diseases. Here, we summarize recent evidence for an early diversification of effector and memory CD8+ T cell fates and discuss how this process is coupled to discrete changes in division speed. We further review technical advances in lineage tracing and cell cycle analysis and outline how these techniques have shed new light on the population dynamics of CD8+ T cell responses, thereby refining our current understanding of the developmental organization of the memory T cell pool.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technische Universität München (TUM), Institute for Medical Microbiology, Immunology and Hygiene, Munich, Germany (GRID:grid.6936.a) (ISNI:0000000123222966)
2 Technische Universität München (TUM), Institute for Medical Microbiology, Immunology and Hygiene, Munich, Germany (GRID:grid.6936.a) (ISNI:0000000123222966); German Center for Infection Research (DZIF), Munich, Germany (GRID:grid.452463.2)