Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The offshore oil extraction process generates copious amounts of high-salinity oil-bearing wastewater; at present, treating such wastewater in an efficient and low-consumption manner is a major challenge. In this study, a flat ceramic membrane bioreactor (C−MBR) process combining aerobic microbial treatment technology and ceramic membrane filtration technology was used to treat oil-bearing wastewater. The pilot test results demonstrated the remarkable performance of the combined sequential batch reactor (SBR) and C-MBR process, wherein the chemical oxygen demand (COD) and ammonia nitrogen (NH4+−N) removal rates reached 93% and 98.9%, respectively. Microbial analysis indicated that the symbiosis between Marinobacterium, Marinobacter, and Nitrosomonas might have contributed to simultaneously removing NH4+−N and reducing COD, and the increased enrichment of Nitrosomonas significantly improved the nitrogen removal efficiency. Cleaning ceramic membranes with NaClO solution reduces membrane contamination and membrane cleaning frequency. The combined SBR and C−MBR process is an economical and feasible solution for treating high-salinity oil-bearing wastewater. Based on the pilot application study, the capital expenditure for operating the full-scale combined SBR and C−MBR process was estimated to be 251,717 USD/year, and the unit wastewater treatment cost was 0.21 USD/m3, which saved 62.5% of the energy cost compared to the conventional MBR process.

Details

Title
Pilot Scale Application of a Ceramic Membrane Bioreactor for Treating High-Salinity Oil Production Wastewater
Author
Sun, Ronglin 1 ; Jin, Yue 2 

 Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; [email protected]; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China 
 Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; [email protected]; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China 
First page
473
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670351865
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.