Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polydopamine (PDA) has now been widely applied to electrochemical biosensing because of its excellent biocompatibility, abundant functional groups, and facile preparation. In this study, polydopamine nanoparticles (PDA-NPs)-functionalized electrochemical aptasensor was developed for the rapid, sensitive, and cost-effective detection of glycated albumin (GA), a promising biomarker for glycemic control in diabetic patients. PDA-NPs were synthesized at various pH conditions in Tris buffer. Cyclic voltammetry (CV) of PDA-NPs-coated screen-printed carbon electrodes (SPCEs) revealed that the materials were more conductive when PDA-NPs were synthesized at pH 9.5 and 10.5 than that at pH 8.5. At pH 10.5, the prepared PDA and PDA-aptamer NPs were monodispersed spherical morphology with an average size of 118.0 ± 1.9 and 127.8 ± 2.0 nm, respectively. When CV and electrochemical impedance spectrometry (EIS) were used for the characterization and detection of the electrochemical aptasensor under optimal conditions, the proposed aptasensor exhibited a broad linearity for detection of GA at a clinically relevant range of (1–10,000 µg mL−1), provided a low detection limit of 0.40 µg mL−1, appreciable reproducibility (less than 10%), and practicality (recoveries 90–104%). In addition, our developed aptasensor presented a great selectivity towards GA, compared to interfering substances commonly present in human serum, such as human serum albumin, urea, glucose, and bilirubin. Furthermore, the evaluation of the aptasensor performance against GA-spiked serum samples showed its probable applicability for clinical use. The developed PDA aptasensor demonstrated excellent sensitivity and selectivity towards GA detection with a simple and facile fabrication process. This proposed technique shows its potential application in GA measurement for improving the screening and management of diabetic patients in the future.

Details

Title
Polydopamine Nanoparticles Functionalized Electrochemical DNA Aptasensor for Serum Glycated Albumin Detection
Author
Maraming, Pornsuda 1 ; Nang Noon Shean Aye 1   VIAFID ORCID Logo  ; Boonsiri, Patcharee 2 ; Daduang, Sakda 3 ; Buhome, Onanong 4 ; Daduang, Jureerut 1 

 Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand 
 Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand 
 Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand 
 Department of Medical Technology, Faculty of Allied Health Sciences, Nakhon Ratchasima College, Nakhon Ratchasima 30000, Thailand 
First page
13699
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739445031
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.