Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vegetation biophysical parameter retrieval is an important earth remote sensing system application. In this paper, we studied the potential impact of the addition of new spectral bands in the red edge region in future Landsat satellites on agroecosystem canopy green leaf area index (LAI) retrieval. The test data were simulated from SPARC ‘03 field campaign HyMap hyperspectral data. Three retrieval approaches were tested: empirical regression based on vegetation index, physical model-based look-up-table (LUT) inversion, and machine learning. The results of all three approaches showed that a potential new spectral band located between the Landsat-8 Operational Land Imager (OLI) red and NIR bands slightly improved the agroecosystem green LAI retrieval accuracy (R2 of 0.787 vs. 0.810 for vegetation index approach, 0.806 vs. 0.828 for LUT inversion approach, and 0.925 vs. 0.933 for machine learning approach). The results of this work are consistent with the conclusions from previous research on the value of Sentinel-2 red edge bands for agricultural green LAI retrieval.

Details

Title
Potential of Red Edge Spectral Bands in Future Landsat Satellites on Agroecosystem Canopy Green Leaf Area Index Retrieval
Author
Cui, Zhaoyu; Kerekes, John P
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126868950
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.