Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Non-orthogonal multiple access (NOMA) technology allows multiple users to use the same time-frequency resource to send signals, which can improve spectral efficiency and throughput. We study the problems of user grouping and power allocation in the downlink of a multi-carrier NOMA system. The sum rate is the optimization goal. A step-by-step optimization is adopted. Users are grouped first and then power is allocated. For user grouping, the user grouping method based on the maximum channel gain difference is improved to prevent users with similar channel gains from being grouped together. For power allocation, the deep learning power allocation algorithm is used among subcarriers. Then, the closed-form expressions of power allocation between multiplexed users are derived according to the minimum transmission rate constraint. The simulation results show that compared with the fractional transmit power allocation method and fixed power allocation method, the deep learning power allocation method improves the system sum rate by about 2.2% and 19%, respectively. The power allocation methods we propose improve the system sum rate by about 10% compared to the fractional transmit power allocation method used among subcarriers and between multiplexed users.

Details

Title
Power Allocation and User Grouping for NOMA Downlink Systems
Author
Li, Jun 1   VIAFID ORCID Logo  ; Gao, Tong 1   VIAFID ORCID Logo  ; He, Bo 2 ; Zheng, Wenjing 1 ; Lin, Fei 1   VIAFID ORCID Logo 

 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
 School of Information Science and Engineering, Shandong University, Qingdao 266237, China 
First page
2452
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779442585
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.