Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the non-probabilistic steady-state dynamics of a dual-rotor system with parametric uncertainties under two-frequency excitations are investigated using the non-intrusive simplex form mathematical metamodel. The Lagrangian formulation is employed to derive the equations of motion (EOM) of the system. The simplex form metamodel without the distribution functions of the interval uncertainties is formulated in a non-intrusive way. In the multi-uncertain cases, strategies aimed at reducing the computational cost are incorporated. In numerical simulations for different interval parametric uncertainties, the special propagation mechanism is observed, which cannot be found in single rotor systems. Validations of the metamodel in terms of efficiency and accuracy are also carried out by comparisons with the scanning method. The results will be helpful to understand the dynamic behaviors of dual-rotor systems subject to uncertainties and provide guidance for robust design and analysis.

Details

Title
Predicting the Dynamic Response of Dual-Rotor System Subject to Interval Parametric Uncertainties Based on the Non-Intrusive Metamodel
Author
Fu, Chao  VIAFID ORCID Logo  ; Feng, Guojin  VIAFID ORCID Logo  ; Ma, Jiaojiao; Lu, Kuan; Yang, Yongfeng; Gu, Fengshou  VIAFID ORCID Logo 
First page
736
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2400726131
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.