Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The availability of educational data obtained by technology-assisted learning platforms can potentially be used to mine student behavior in order to address their problems and enhance the learning process. Educational data mining provides insights for professionals to make appropriate decisions. Learning platforms complement traditional learning environments and provide an opportunity to analyze students’ performance, thus mitigating the probability of student failures. Predicting students’ academic performance has become an important research area to take timely corrective actions, thereby increasing the efficacy of education systems. This study proposes an improved conditional generative adversarial network (CGAN) in combination with a deep-layer-based support vector machine (SVM) to predict students’ performance through school and home tutoring. Students’ educational datasets are predominantly small in size; to handle this problem, synthetic data samples are generated by an improved CGAN. To prove its effectiveness, results are compared with and without applying CGAN. Results indicate that school and home tutoring combined have a positive impact on students’ performance when the model is trained after applying CGAN. For an extensive evaluation of deep SVM, multiple kernel-based approaches are investigated, including radial, linear, sigmoid, and polynomial functions, and their performance is analyzed. The proposed improved CGAN coupled with deep SVM outperforms in terms of sensitivity, specificity, and area under the curve when compared with solutions from the existing literature.

Details

Title
Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM
Author
Sarwat, Samina 1 ; Ullah, Naeem 1 ; Sadiq, Saima 2 ; Saleem, Robina 1 ; Umer, Muhammad 3   VIAFID ORCID Logo  ; Ala’ Abdulmajid Eshmawi 4 ; Abdullah, Mohamed 5 ; Imran Ashraf 6   VIAFID ORCID Logo 

 Department of Humanities and Social Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; [email protected] (S.S.); [email protected] (N.U.); [email protected] (R.S.) 
 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan; [email protected] 
 Department of Computer Science Information Technology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan 
 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia; [email protected] 
 Research Centre, Future University in Egypt, New Cairo 11745, Egypt; [email protected] 
 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea 
First page
4834
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686177404
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.