It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Precise prediction on vacant parking space (VPS) information plays a vital role in intelligent transportation systems for it helps drivers to find the parking space quickly to reduce unnecessary waste of time and excessive environmental pollution. By analyzing the historical zone-wise VPS data, we find that for the number of VPSs, there is not only a solid temporal correlation within each parking lot, but also an obvious spatial correlation among different parking lots. Given this, this paper proposes a hybrid deep learning framework, known as the dConvLSTM-DCN (dual Convolutional Long Short-Term Memory with Dense Convolutional Network), to make short-term (within 30 min) and long-term (over 30 min) predictions on the VPS availability zone-wisely. Specifically, the temporal correlations of different time scales, namely the 5-min and daily-wise temporal correlations of each parking lot, and the spatial correlations among different parking lots can be effectively captured by the two parallel ConvLSTM components, and meanwhile, the dense convolutional network is leveraged to further improve the propagation and reuse of features in the prediction process. Besides, a two-layer linear network is used to extract the meta-info features to promote the prediction accuracy. For long-term predictions, two methods, namely the direct and iterative prediction methods, are developed. The performance of the prediction model is extensively evaluated with practical data collected from nine public parking lots in Santa Monica. The results show that the dConvLSTM-DCN framework can achieve considerably high accuracy in both short-term and long-term predictions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Wenzhou University, College of Computer Science and Artificial Intelligence, Wenzhou, China (GRID:grid.412899.f) (ISNI:0000 0000 9117 1462)
2 Wenzhou University, College of Computer Science and Artificial Intelligence, Wenzhou, China (GRID:grid.412899.f) (ISNI:0000 0000 9117 1462); Wenzhou University, Innovation Research Center for Intelligent Networking, Wenzhou, China (GRID:grid.412899.f) (ISNI:0000 0000 9117 1462)
3 Wenzhou Kean University, Department of Computer Science, Wenzhou, China (GRID:grid.507057.0) (ISNI:0000 0004 1779 9453)