Full text

Turn on search term navigation

Copyright © 2022 Xitao Liu and Lihui Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

With the advent of big data, statistical accounting based on artificial intelligence can realistically reflect the dynamics of labor force and market segmentation. Therefore, based on the combination of machine learning algorithm and traditional statistical data under big data, a prediction model of unemployment in labor force based on the combination of time series model and neural network model is built. According to the theoretical parameters, the algorithm of the two-weight neural network is proposed, and the unemployment rate in labor force is predicted according to the weight combination of the two. The outcomes show that the fitting effect based on the combined model is superior to that of the single model and the traditional BP neural network model; at the same time, the prediction results with total unemployment and unemployment rate as evaluation indexes are excellent. The model can offer new ideas for assisting to solve the unemployment of the labor force in China.

Details

Title
Prediction of Labor Unemployment Based on Time Series Model and Neural Network Model
Author
Liu, Xitao 1 ; Li, Lihui 1   VIAFID ORCID Logo 

 School of Public Finance and Administration, Harbin University of Commerce, Harbin 150001, Heilongjiang, China 
Editor
Le Sun
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2675436286
Copyright
Copyright © 2022 Xitao Liu and Lihui Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/