Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to detect the oleic acid content of rapeseed quickly and accurately, we propose, in this paper, an artificial BP neural networks based model for predicting oleic acid content by using rapeseed’s hyperspectral information. Four types of spectral features are selected for our investigation, namely multifractal index, sensitive band, trilateral parameters, and spectral index. Both univariate variable and multiple variables are considered as our model input. The result shows that the combined feature has higher precision and better stability than when using a single parameter. An interesting finding shows that the combined feature involving multifractal parameters can significantly improve the model performance. Taking the combined feature {MF-h(0), SB-DR574, SPI-NDSI(R575, R576)} as the model input, the constructed BP (back propagation) neural networks model has the highest precision, with the coefficient of determination (R2) 0.8753, root mean square error (RMSE) 1.0301, and relative error (RE) 1.047%. This result provides some experience for the rapid detection of rapeseed’s oleic acid content.

Details

Title
Prediction of Oleic Acid Content of Rapeseed Using Hyperspectral Technique
Author
Liu, Fan; Wang, Fang; Lu, Xin; Yang, Jiayi
First page
5726
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544957776
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.