Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is of practical significance to find organic metal-free catalyst materials. We propose a new graphene-like carbon nitride structure, which was able to meet these requirements well. Its primitive cell consists of eight carbon atoms and six nitrogen atoms. Hence, we called this structure g–C8N6. The stability of the structure was verified by phonon spectroscopy and molecular dynamics simulations. Then its electronic structure was calculated, and its band edge position was compared with the redox potential of water. We analyzed its optical properties and electron–hole recombination rate. After the above analysis, it is predicted that it is a suitable photocatalyst material. To improve its photocatalytic performance, two methods were proposed: applied tensile force and multilayer stacking. Our research is instructive for the photocatalytic application of this kind of materials.

Details

Title
Prediction of a Stable Organic Metal-Free Porous Material as a Catalyst for Water-Splitting
Author
Li, Hengshuai; Hu, Haiquan; Bai, Chenglin  VIAFID ORCID Logo  ; Bao, Chunjiang; Liu, Cailong; Wang, Qinglin; Guo, Feng; Feng, Zhenbao; Yu, Hanwen; Chen, Ming; Qu, Konggang
First page
836
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2428202998
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.