Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The endeavors toward sustainable transportation systems are a key concern for planners and decision-makers where increasing public transport attractiveness is essential. In this paper, a machine-learning-based predictive modeling approach is proposed for metro ridership prediction, considering the built environment around the stations; it is in the best interest of sustainable transport planning to ultimately contribute to the achievement of Sustainable Development Goals (UN-SDGs). A total of twelve parameters are considered as input features including time of day, day of the week, station, and nine types of land use density. Hence, a time-series database is used for model development and testing. Several machine learning (ML) models were evaluated for their predictive performance: ridge regression, lasso regression, elastic net, k-nearest neighbor, support vector regression, decision tree, random forest, extremely randomized trees, adaptive boosting, gradient boosting, extreme gradient boosting, and stacking ensemble learner. Bayesian optimization and grid search are combined with 10-fold cross-validation to tune the hyperparameters of each model. The performance of the developed models was validated based on the test dataset using five quantitative performance measures. The results demonstrated that, among the base learners, the decision tree showed the highest performance with an R2 of 87.4% on the test dataset. KNN and SVR were the second and third-best models among the base learners. Furthermore, the feature importance investigation explains the relative contribution of each type of land use density to the prediction of the metro ridership. The results showed that governmental land use density, educational facilities land use density, and mixed-use density are the three factors that play the most critical role in determining total ridership. The outcomes of this research could be of great help to the decision-making process for the best achievement of sustainable development goals in relation to sustainable transport and land use.

Details

Title
Predictive Machine Learning Algorithms for Metro Ridership Based on Urban Land Use Policies in Support of Transit-Oriented Development
Author
AlKhereibi, Aya Hasan 1   VIAFID ORCID Logo  ; Wakjira, Tadesse G 2   VIAFID ORCID Logo  ; Kucukvar, Murat 1   VIAFID ORCID Logo  ; Onat, Nuri C 3 

 Industrial and Systems Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar 
 Civil and Architectural Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar 
 Qatar Transportation and Traffic Safety Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar 
First page
1718
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767298225
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.