Full Text

Turn on search term navigation

© 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/

Abstract

Lignin-containing nanofibrillated cellulose (LNFC) were prepared from p-toluenesulfonic acid (p-TsOH) pretreated sugarcane bagasse (SCB) using either formic acid (FA) or hydrochloric acid (HCl) and high-pressure homogenization. The composition, morphology, dispersity, crystallinity, particle size, thermal stability, and hydrophobicity of LNFC treated with FA (F- LNFC) and HCl (H- LNFC) were compared via electron microscopy, an X-ray diffractometer (XRD), a thermal gravimetric analyzer (TGA), a Fourier transform infrared spectroscope (FTIR), and water contact angle (WCA) analysis. The results of morphology and dispersity testing showed that LNFC with uniform dispersion were successfully prepared using a homogeneous pressure of 30 MPa and the F- LNFC particles were more stable in an aqueous solution. The crystallinity of the LNFC was well maintained after homogenization. The TGA, FTIR, and WCA data indicated that F-LNFC had better thermal stability and were more hydrophobic than H-LNFC because FA could esterify cellulose. Improved dispersity and thermal stability and increased crystallinity and hydrophobicity of cellulose nanofibrils would enhance the performance of nanocomposite materials.

Details

Title
Preparation and characterization of lignin-containing nanofibrillated cellulose
Author
Lan, T; Liu, H; Li, H; Qin, Y; Yue, G
Pages
4689-4698
Section
Research
Publication year
2020
Publication date
Aug 2020
Publisher
North Carolina State University
e-ISSN
19302126
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2519825901
Copyright
© 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/