Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To investigate the issues related to significant environmental damage and poor resource utilization of soda residue (SR), the composition and microstructure of hydration products of the GGBS (ground granulated blast-furnace slag) synergistically activated by NaOH-SR are characterized by an X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), thermogravimetric–differential thermogravimetric (TG-DTG) analysis, and scanning electron microscope X-ray energy dispersive spectrometry (SEM-EDS). The effect of SR proportion, activator dosage, and water-to-binder ratio on the hydration process is studied. Results indicate that the hydration products mainly include hydrated calcium chloroaluminate (3CaO·Al2O3·CaCl2·10H2O, FS), hydrated calcium aluminosilicate (Ca2Al3(SiO4)3OH, C-A-S-H), halite (NaCl), calcite (CaCO3), and C-S-H gel. With the increase in SR proportion (especially from 80% to 90%), the C-S-H gel yield decreases significantly, while the FS yield rapidly increases, and the T-O-Si (T = Al or Si) peak shifts to a higher wavenumber range (955 cm−1 to 975 cm−1). With the decrease in activator dosage (40% to 15%), the hydration reaction gradually weakens, and the FTIR band of the T-O-Si (T = Al or Si) shifts to the lower wavenumber range (968 cm−1 to 955 cm−1). Then, cemented paste backfills (CPBs) are prepared with iron tailings as the aggregate. At mass content of 75%, SR proportion of 80%, and activator dosage of 30%, the fluidity of the CPB reaches 267.5 mm with a 28-day unconfined compressive strength (UCS) of 2.4 MPa, confirming that SR- and NaOH-synergistically-activated GGBS has great application prospects in backfill mining.

Details

Title
Preparation and Characterization of Low-Carbon Cementitious Materials Based on Soda-Residue-Activated Ground Granulated Blast-Furnace Slag: A Case Study on Cemented Paste Backfills
Author
Ren, Qiangsheng 1 ; Qi, Wenyue 1   VIAFID ORCID Logo  ; Zhao, Qingxin 2 ; Jia, Yali 1 ; Feng, Yabin 1 ; Han, Yongji 1 ; Duan, Ge 1 ; Pang, Haotian 1 

 Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066004, China 
 Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 
First page
694
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806584096
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.