Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, graphitic carbon nitride (g-C3N4)-based ZnO heterostructure was synthesized using a facile calcination method with urea and zinc nitrate hexahydrate as the initiators. According to the scanning electron microscopic (SEM) images, spherical ZnO particles can be seen along the g-C3N4 nanosheets. Additionally, the X-ray diffraction (XRD) analysis reveals the successful synthesis of the g-C3N4/ZnO. The photocatalytic activity of the synthesized catalyst was tested for the decolorization of crystal violet (CV) as an organic refractory contaminant. The impacts of ZnO molar ratio, catalyst amount, CV concentration, and H2O2 concentration on CV degradation efficiency were investigated. The obtained outcomes conveyed that the ZnO molar ratio in the g-C3N4 played a prominent role in the degradation efficiency, in which the degradation efficiency reached 95.9% in the presence of 0.05 mmol of ZnO and 0.10 g/L of the catalyst in 10 mg/L of CV through 120 min under UV irradiation. Bare g-C3N4 was also tested for dye decolorization, and a 76.4% dye removal efficiency was obtained. The g-C3N4/ZnO was also tested for adsorption, and a 32.3% adsorption efficiency was obtained. Photocatalysis, in comparison to adsorption, had a dominant role in the decolorization of CV. Lastly, the results depicted no significant decrement in the CV degradation efficiency in the presence of the g-C3N4/ZnO photocatalyst after five consecutive runs.

Details

Title
Preparation of S-Scheme g-C3N4/ZnO Heterojunction Composite for Highly Efficient Photocatalytic Destruction of Refractory Organic Pollutant
Author
Buse Sert 1 ; Bilici, Zeynep 2 ; Ocakoglu, Kasim 1   VIAFID ORCID Logo  ; Dizge, Nadir 2 ; Tannaz Sadeghi Rad 3 ; Khataee, Alireza 4   VIAFID ORCID Logo 

 Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey 
 Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey 
 Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey 
 Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran 
First page
485
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791599474
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.