Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures.

Details

Title
Printing ZnO Inks: From Principles to Devices
Author
Arrabito, Giuseppe  VIAFID ORCID Logo  ; Aleeva, Yana  VIAFID ORCID Logo  ; Pezzilli, Riccardo; Ferrara, Vittorio; Pier Gianni Medaglia; Pignataro, Bruno; Prestopino, Giuseppe  VIAFID ORCID Logo 
First page
449
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2409744806
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.