It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For evaluating the classification model of an information system, a proper measure is usually needed to determine if the model is appropriate for dealing with the specific domain task. Though many performance measures have been proposed, few measures were specially defined for multi-class problems, which tend to be more complicated than two-class problems, especially in addressing the issue of class discrimination power. Confusion entropy was proposed for evaluating classifiers in the multi-class case. Nevertheless, it makes no use of the probabilities of samples classified into different classes. In this paper, we propose to calculate confusion entropy based on a probabilistic confusion matrix. Besides inheriting the merit of measuring if a classifier can classify with high accuracy and class discrimination power, probabilistic confusion entropy also tends to measure if samples are classified into true classes and separated from others with high probabilities. Analysis and experimental comparisons show the feasibility of the simply improved measure and demonstrate that the measure does not stand or fall over the classifiers on different datasets in comparison with the compared measures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer