Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, structured phospholipids (SPLs), which are modified phospholipids (PLs), have attracted more attention due to their great potential for application in the field of pharmacy, food, cosmetics, and health. SPLs not only possess enhanced chemical, physical and nutritional properties, but also present superior bioavailability in comparison with other lipid forms, such as triacylglycerols, which make SPLs become more competitive carriers to increase the absorption of the specific fatty acids in the body. Compared with chemical-mediated SPLs, the process of enzyme-mediated SPLs has the advantages of high product variety, high substrate selectivity, and mild operation conditions. Both lipases and phospholipases can be used in the enzymatic production of SPLs, and the main reaction type contains esterification, acidolysis, and transesterification. During the preparation, reaction medium, acyl migration, water content/activity, substrates and enzymes, and some other parameters have significant effects on the production and purity of the desired PLs products. In this paper, the progress in enzymatic modification of PLs over the last 20 years is reviewed. Reaction types and characteristic parameters are summarized in detail and the parameters affecting acyl migration are first discussed to give the inspiration to optimize the enzyme-mediated SPLs preparation. To expand the application of enzyme-mediated SPLs in the future, the prospect of further study on SPLs is also proposed at the end of the paper.

Details

Title
Progress & Prospect of Enzyme-Mediated Structured Phospholipids Preparation
Author
Li, Yuhan 1 ; Dai, Lingmei 1 ; Liu, Dehua 2 ; Du, Wei 1   VIAFID ORCID Logo 

 Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Y.L.); [email protected] (L.D.); [email protected] (D.L.) 
 Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Y.L.); [email protected] (L.D.); [email protected] (D.L.); Tsinghua Innovation Center in Dongguan, Dongguang 523808, China 
First page
795
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693968761
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.