It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The accumulation of waste rubber tires causes environmental problems, due to most of them cannot be recycled into new tires. Recently, this waste is gradually used as a material replacement in civil engineering such as in increasing damping properties. This study investigates the physical and mechanical properties of waste rubber tires including density (ρ), ultimate tensile strength (σ), elongation at break, hardness (Shore A), modulus of elasticity (E), and shear modulus (G). The specimens used were coded as A, B, C, and D to represent specified brand name. The testing method referred to ISO standards and was carried out in the laboratory of Center for Leather, Rubber, and Plastics (CLRP), and the structural laboratory of Department of Civil Engineering and Environmental, Gadjah Mada University, Yogyakarta, Indonesia. The result shows that the density of all brands is nearly the same which is around 1.1 gr/cm3. The A rubber tire is indicated as the best damping properties since it has the lowest value on tensile strength, hardness, modulus of elasticity and shear modulus. However, the elongation at break is the highest value, compared to the other specimens. B rubber tire shows hard rubber, while C and D are high strength rubber. Therefore, B, C, and D rubber tires are appropriate to be used as barrier supports which must be able to withstand large forces, while the damping is not a priority.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ph.D. Student of the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
2 Professor of the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.
3 Senior lecturer of the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia





