Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The SnO2 electron transport layer (ETL) has been characterized as being excellent in optical and electrical properties, ensuring its indispensable role in perovskite solar cells (PSCs). In this work, SnO2 films were prepared using two approaches, namely, the ultrasonic spraying method and the traditional spin-coating, where the different properties in optical and electrical performance of SnO2 films from two methods were analyzed by UV–Vis, XRD, AFM, and XPS. Results indicate that the optical band gaps of the sprayed and the spin-coated film are 3.83 eV and 3.77 eV, respectively. The sprayed SnO2 film has relatively low surface roughness according to the AFM. XPS spectra show that the sprayed SnO2 film has a higher proportion of Sn2+ and thus corresponds to higher carrier concentration than spin-coated one. Hall effect measurement demonstrates that the carrier concentration of the sprayed film is 1.0 × 1014 cm−3, which is slightly higher than that of the spin-coated film. In addition, the best PCSs efficiencies prepared by sprayed and spin-coated SnO2 films are 18.3% and 17.5%, respectively. This work suggests that the ultrasonic spraying method has greater development potential in the field of flexible perovskite cells due to its feasibility of large-area deposition.

Details

Title
Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying
Author
Wu, Long 1 ; He, Aoxi 1 ; Xie, Shenghui 1 ; Yang, Xiutao 1 ; Wu, Lili 2 

 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; [email protected] (W.L.); [email protected] (A.H.); [email protected] (S.X.); [email protected] (X.Y.) 
 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; [email protected] (W.L.); [email protected] (A.H.); [email protected] (S.X.); [email protected] (X.Y.); Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China 
First page
3211
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663000626
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.