Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to model the prospectivity for placer deposits using geomorphic and landscape parameters. Within a geographic information system (GIS), spatial autocorrelation analysis of 3709 geochemical samples was used to identify prospective and non-prospective targets for columbite-tantalite (Nb-Ta) placer deposits of Hana-Lobo (H-L) Geological Complex (West- Central Côte d’Ivoire, West Africa). Based on mineralization system analysis, hydrologic, geomorphologic and landscape parameters were extracted at the locations of the identified targets. Supervised automatic classification approaches were applied, including Random Forest (RF), K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) to find a prospectivity model complex enough to capture the nature of the data. Metrics such as cross-validation accuracy (CVA), Receiver Operating Characteristic (ROC) curves, Area Under Curve (AUC) values and F-score values were used to evaluate the performance and robustness of output models. Results of applying machine-learning algorithms demonstrated that predictions provided by the final RF and KNN models were very close (κ = 0.56 and CVA = 0.69; κ = 0.54 and CVA = 0.68, respectively) and those provided by the SVM models were slightly lower with κ = 0.46 and CVA = 0.63. Independent validation results confirmed the slightly higher performance of both KNN and RF prospectivity models, compared to final SVM. Sensitivity analyses of both KNN and RF prospectivity models for medium and high-grade Nb-Ta deposits show a prediction rate of up to 90%.

Details

Title
Prospectivity Mapping of Heavy Mineral Ore Deposits Based upon Machine-Learning Algorithms: Columbite-Tantalite Deposits in West- Central Côte d’Ivoire
Author
Kassi Olivier Shaw; Goïta, Kalifa  VIAFID ORCID Logo  ; Germain, Mickaël  VIAFID ORCID Logo 
First page
1453
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748318828
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.