Abstract

Thermoelectric materials have received much attention as energy harvesting devices and power generators. However, discovering novel high-performance thermoelectric materials is challenging due to the structural diversity and complexity of the thermoelectric materials containing alloys and dopants. For the efficient data-driven discovery of novel thermoelectric materials, we constructed a public dataset that contains experimentally synthesized thermoelectric materials and their experimental thermoelectric properties. For the collected dataset, we were able to construct prediction models that achieved R2-scores greater than 0.9 in the regression problems to predict the experimentally measured thermoelectric properties from the chemical compositions of the materials. Furthermore, we devised a material descriptor for the chemical compositions of the materials to improve the extrapolation capabilities of machine learning methods. Based on transfer learning with the proposed material descriptor, we significantly improved the R2-score from 0.13 to 0.71 in predicting experimental ZTs of the materials from completely unexplored material groups.

Details

Title
A public database of thermoelectric materials and system-identified material representation for data-driven discovery
Author
Na, Gyoung S. 1   VIAFID ORCID Logo  ; Chang, Hyunju 1   VIAFID ORCID Logo 

 Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (GRID:grid.29869.3c) (ISNI:0000 0001 2296 8192) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2722750445
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.