It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thermoelectric materials have received much attention as energy harvesting devices and power generators. However, discovering novel high-performance thermoelectric materials is challenging due to the structural diversity and complexity of the thermoelectric materials containing alloys and dopants. For the efficient data-driven discovery of novel thermoelectric materials, we constructed a public dataset that contains experimentally synthesized thermoelectric materials and their experimental thermoelectric properties. For the collected dataset, we were able to construct prediction models that achieved R2-scores greater than 0.9 in the regression problems to predict the experimentally measured thermoelectric properties from the chemical compositions of the materials. Furthermore, we devised a material descriptor for the chemical compositions of the materials to improve the extrapolation capabilities of machine learning methods. Based on transfer learning with the proposed material descriptor, we significantly improved the R2-score from 0.13 to 0.71 in predicting experimental ZTs of the materials from completely unexplored material groups.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer