Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of telecare medical information system (TMIS), doctors and patients are able to access useful medical services via 5G wireless communications without visiting the hospital in person. Unfortunately, TMIS should have the essential security properties, such as anonymity, mutual authentication, and privacy, since the patient’s data is transmitted via a public channel. Moreover, the sensing devices deployed in TMIS are resource-limited in terms of communication and computational costs. Thus, we design a physically secure privacy-preserving scheme using physical unclonable functions (PUF) in TMIS, called PUF-PSS to resolve the security requirements and efficiency of the existing related schemes. PUF-PSS prevents the security threats and also guarantees anonymity, key freshness, and authentication. We evaluate the security of PUF-PSS by performing formal and informal security analyses, including AVISPA implementation and ROR oracle model. We perform the test bed experiments utilizing well-known MIRACL based on a Raspberry PI 4 and compare the communication and computational costs of PUF-PSS with the previous schemes for TMIS. Consequently, PUF-PSS guarantees better efficiency and security than previous schemes and can be applied to TMIS environments.

Details

Title
PUF-PSS: A Physically Secure Privacy-Preserving Scheme Using PUF for IoMT-Enabled TMIS
Author
Yu, Sungjin 1   VIAFID ORCID Logo  ; Park, Kisung 2   VIAFID ORCID Logo 

 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea or ; School of Electronics and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea 
 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea or 
First page
3081
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724232307
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.