Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With an improvement in the performance of radio telescopes, the number of pulsar candidates has increased rapidly, which makes selecting valuable pulsar signals from the candidates challenging. It is imperative to improve the recognition efficiency of pulsars. Therefore, we solved this problem from the perspective of intelligent image processing and a deep neural network model AR_Net was proposed in this paper. A single time–phase-subgraph or frequency-phase-subgraph was used as the judgment basis in the recognition model. The convolution blocks can be obtained by combining the attention mechanism module, feature extractor and residual connection. Then, different convolution blocks were superimposed to constitute the AR_Net to screen pulsars. The attention mechanism module was used to calculate the weight through an additional feedforward neural network and the important features in the sample were identified by weight, so the ability of the model to learn pivotal information was improved. The feature extractor was used to gain the high-dimensional features in the samples and the residual connection was introduced to alleviate the problem of network degradation and intensify feature reuse. The experimental results show that AR_Net has higher F1-score, recall and accuracy, and our method produces a competitive result compared with previous methods.

Details

Title
Pulsar Candidate Recognition Using Deep Neural Network Model
Author
Yin, Qian 1   VIAFID ORCID Logo  ; Wang, Yan 1 ; Zheng, Xin 1   VIAFID ORCID Logo  ; Zhang, Jikai 2 

 School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China; [email protected] (Q.Y.); [email protected] (Y.W.) 
 School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; [email protected] 
First page
2216
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694000299
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.