It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is urgent to identify and screen emerging pollutants (EPs), which have caused great harm to human health and the environment. In their detection of liquid chromatography-mass spectrometry (LC-MS), the quantitative structure–retention relationship (QSRR) model is simple and efficient to predict the retention behavior of compounds. In the present work, we collected more data with the relative retention time (RRT) of 490 compounds, and filtered the molecular descriptors with lasso regression and multiple linear regression analysis. Then ten important molecular descriptors were screened and applied the QSRR models with deep neural network (DNN), multiple linear regression (MLR), and support vector machine. The DNN model had the best accuracy which the correlation coefficient R2 reached 0.913. Finally, we determined the applicability of the DNN model through a descriptor value range to assist in the identification and screening of EPs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, Peking, China
2 Beijing Center for Disease Prevention and Control, Beijing, Peking, China